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Summary One-parameter families of steady-state convection regimes developing in the Darcy plane convection problem in a rectan-
gular vessel are investigated numerically with increase of filtrational Rayleigh number and various aspect ratios of the container. The
reason of the existence of these families is the cosymmetry. We consider Galerkin systems of various dimensions (up to 1000) for PDE
approximation. The qualitative repetition of the bifurcations and consistency of the bifurcation parameter values was established by
investigation of Galerkin’s models of increasing dimensions for each set of the physical parameters. The loss of stability on a primary
family, bifurcations of equilibrium families, periodic and chaotic regimes are studied. The fluid motion and heat transfer by convective
regimes are also investigated.

INTRODUCTION AND MATHEMATICAL FORMULATION OF THE PROBLEM

In investigating convective motions of the fluid in a horizontal cylinder with an arbitrary shape of cross-section and with
high heat-conducting side walls it had been found [1, 2] that a one-parameter family of equilibria was developed as a
result of the first bifurcation. As shown in [2] the cause of the existence of the family was a nontrivial cosymmetry, the
theory of which was developed last years. An analytical investigation of the one-parameter family of equilibria in the
planar convection problem makes it possible to obtain asymptotics of the family in the neighborhood of its onset. The
question about the evolution of the family at increasing the Rayleigh number is out of analytical treatment and requires
numerical investigation as well as the analysis of occurrence and development of auto-oscillations.
We consider a rectangular containerD = [0, a] × [0, b] filled with a porous medium and saturated by an incompressible
fluid. The dimensionless equations of gravity convection of the fluid in the container uniformly heated from below have
the form [1, 2]: {

∆ψ = θx,
θt + ψyθx − ψxθy = ∆θ + λψx.

(1)

Hereψ(x, y, t) is the stream function,θ(x, y, t) is the temperature deviation from the equilibrium profile. The parameter
λ is the filtrational Rayleigh number. On the boundary of the container the Dirichlet boundary condition is specified

θ
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We can expressψ in terms ofθ by solving the Dirichlet boundary value problem for the Poisson equation

ψ = Gθx, (3)

whereG is the corresponding Green’s operator. As shown in [2, 3], problem (1), (2) has a cosymmetry determined by the
right-hand side of equality (3).
The critical values of the spectral problem for the zero equilibrium are [3]

λm,n = 4π2
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)
, m, n = 1, 2, . . . (4)

All eigenvalues (4) are at least double and each transition of the bifurcation parameterλ through the valueλm,n corre-
sponds to the bifurcation of the origin of a one-parameter family of equilibria. As shown in [2] the first critical valueλ1,1

is always double and a cycle of steady-state regimes branches off the quiescent state atλ = λ1,1. All the equilibria of
the family are neutrally stable along the cycle and asymptotically stable in the transversal directions, and their spectrum
depends on the equilibrium coordinates and, therefore, this family cannot be an orbit of the action of any symmetry group
[3].
In order to approximate problem (1)-(2) the Galerkin method is used. The numerical solution to the problem is found in
the form
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(5)

Substitution (5) into (1) and corresponding projection operations lead to a system of ordinary differential equations of
the orderN = nx × ny for the functionsθi,j [6, 7]. The special technique for calculation of one-parameter families of
equilibria was developed in [7] wich based on the cosymmetric version of the implicit function theorem [2, 4] .



NUMERICAL RESULTS

Loss of stability on the family
The loss of stability on a one-parameter family of noncosymmetric equilibria of ordinary differential equations systems
is extended on a parameter. It means, that in the beginning on a set there are equilibria with a neutral spectrum. Then
these equilibria lose stability, and in their neighborhood there are arcs of unstable equilibria. With a modification of a
bifurcation parameter the sizes of unstable arcs are increased, the amount of steady and unstable arcs can vary, both at
the expense of origin new, and in an outcome of confluence already existing. We find that the loss of stability on a stable
set of stationary regimes depends of vessel size and can be oscillatory or monotone and can happens simultaneously in
two, four, six or eight points [5, 6, 10]. After the first loss of stability and further increasing of the parameterλ the set of
unstable regimes grow by forming unstable arcs in the families. Further increase ofλ may lead to appearence of unstable
regimes in new regions of the family both with monotonic and oscillatory instabilities.

Stationary convective regimes
To each point of a one-parameter family of equilibria corresponds stationary driving of a liquid. Is shown, that the
character of complication of steady stationary convective regimes depends on geometry of the container [6, 7, 10]. The
evolution of convective regimes from the appearance of the family to its instability is the following: for a narrow container
increasing ofλ makes the structure of existing rolls more complicated, and new convective cells are formed inside the
existing ones; for a wide vessel new convective rolls appear. Both local and average heat transfer of the regimes in a wide
vessel do not differ much neither qualitatively nor quantitatively. This difference is essential for a narrow vessel since
there exist regimes with high and low heat transfer at the top and at the bottom of the vessel.

Bifurcations of families
The series of bifurcations of one-parameter families of equilibria was found out: birth of a new family from already
existing, intersection and join of equilibrium curve, origin of a cycle of equilibria ’from an air’ etc [6, 7, 10]. The
bifurcations of families are connected with different equilibrium families both with primary stable and with unstable.
All enumerated bifurcations take place in Galerkin systems of all considered dimensions. We found many variants of
bifurcations studied theoretically in [8].

Periodic and chaotic regimes
The periodic and chaotic regimes was founded for different values ofλ and sizes ofD. The steady periodic regimes can
occurs by two ways: as a result of special cosymmetric Hopf bifurcation or as a result of Euler bifurcation that depends on
container size. For some values of parameter transition from stationary movement of a liquid at once to chaotic movement
is possible. Both periodic and chaotic modes can coexist with steady stationary regimes.

Selection of stable regimes
It is natural to ask which stable stationary regimes of one-parameter family will be realized in a experiment. In the
computer experiment, the initial points were distributed uniformly on a small sphere centered on the zero equilibrium for
values ofλ. We found that two regimes can be realized from the initial conditions near mechanical equilibrium. The
selection mechanism was pretty obvious in this case and connected with phase space structure.
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