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Summary In this paper we show that the oscillatory motion of an airfoil (wing) in an incompressible inviscid fluid can
determine the apparition of a propulsive force. To this aim we discretize the lifting surface equation and calculate the
pressure coefficients. Integrating, we calculate the average drag coefficient which for a range of values of the frequency
may happen to be negative. The oscillatory motion of a wing can model the motion of fishes and birds. It is also of
great importance in aeroelasticity.

THE INTEGRAL EQUATION

We consider a system of coordinates Ox(1)y(1)z(1) related to the wing and we introduce the dimensionless space

coordinates (x, z) =
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, taking the wing length a as reference length along the vertical direction

(Oz(1)-axis direction) and along the direction of the unperturbed uniform flow (Ox(1)-axis direction). We

introduce also the dimensionless space coordinate y =
y(1)

b
, taking the wing half-span b as reference length

along the Oy(1)-axis direction. We denote by D(1) the wing projection on the Ox(1)y(1) -plane. Let

0 = F (x(1), y(1), z(1)) = z(1) − h(1)(x(1), y(1)) exp(iωt) ; (x(1), y(1)) ∈ D(1), (1)
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be the equation of the oscillating wing (we neglect the thickness of the wing).

In the sequel ρ0Re(f exp(iωt)) is the jump of the pressure over the oscillating wing ( ρ0 is the density of the
fluid at rest), ω is the frequency of the oscillation, V0 is the translation velocity of the unperturbed flow with

respect to the Ox(1)y(1)z(1) frame of refference, $ =
b

a
is the aspect ratio.

We introduce the dimensionless functions and variables

h(x, y) =
h(1)(x(1), y(1))

a
, �ω =

ωa

V0
, �f(x, y) =

f(ax, by)

V 2
0

, x0 = x− ξ, y0 = y − η,

In the framework of the linearized theory the lifting surface equation for oscillatory airfoils is [1]:
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, D = {(x, y); (ax, by) ∈ D(1)}. (2)

In the sequel we are going to put into evidence the singularities of the kernel. We have
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du = K(1) (x, y; ξ, η) +K(2) (x, y; ξ, η) +K(3) (x, y; ξ, η) ,

where the kernel
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has a strong singularity, the kernel

K(2) (x, y; ξ, η) = − iω̃
√

x20 +$2y20
+
ω̃2

2
ln

(

−x0 +
√

x20 +$2y20

)

,

has weak singularities and the kernel
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has no singularity. (I1 and K1 are Bessel functions and L−1 is a Strouve function.)

THE PROPULSIVE FORCE FOR A DELTA WING

Employing for each type of kernel adequate quadrature formulas, we discretize (2) obtaining the values of �f in
the nodes of the grid. With the the formulas

Cp(x
(1), y(1), t) = Re[ �f(x, y) exp(iωt)], CD(t) = −2

∫ ∫

D

nxCp(ax, by, t)dxdy, ˜CD =
1

T

∫ T

0
CD (t) dt

where T is the period of the oscillation, we calculate the pressure coefficient field, the drag coefficient and the
average drag coefficient. Considering the oscillating delta wing whose equation is

h(x, y) = α exp(iω̃1x), (x, y) ∈ D = {(x, y) ; 0 < y < |x| , 0 < x < 1} ,

we calculate the average drag coefficient and we notice that if �ω surpasses a certain critical value, the average
drag coefficient becomes negative i.e. there appears a propulsive force. In the following figure we present the
oscillating wing (below) and the pressure coefficient fields (above) for the values of the nondimensional time
V0
a
t ∈ {1, 1, 2, 4} and for the nondimensional frequencies �ω = π/2, ω̃1 = 6π/5. We considered $ = 1/8.
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