SELF-PROPULSION OF AN OSCILLATORY WING

Adrian S. Carabineanu*

*University of Bucharest, Faculty of Mathematics & Computer Sciences, RO 70109
Bucharest, Romania

<u>Summary</u> In this paper we show that the oscillatory motion of an airfoil (wing) in an incompressible inviscid fluid can determine the apparition of a propulsive force. To this aim we discretize the lifting surface equation and calculate the pressure coefficients. Integrating, we calculate the average drag coefficient which for a range of values of the frequency may happen to be negative. The oscillatory motion of a wing can model the motion of fishes and birds. It is also of great importance in aeroelasticity.

THE INTEGRAL EQUATION

We consider a system of coordinates $Ox^{(1)}y^{(1)}z^{(1)}$ related to the wing and we introduce the dimensionless space coordinates $(x,z)=\left(\frac{x^{(1)}}{a},\frac{z^{(1)}}{a}\right)$, taking the wing length a as reference length along the vertical direction $(Oz^{(1)}$ -axis direction) and along the direction of the unperturbed uniform flow $(Ox^{(1)}$ -axis direction). We introduce also the dimensionless space coordinate $y=\frac{y^{(1)}}{b}$, taking the wing half-span b as reference length along the $Oy^{(1)}$ -axis direction. We denote by $D^{(1)}$ the wing projection on the $Ox^{(1)}y^{(1)}$ -plane. Let

$$0 = F(x^{(1)}, y^{(1)}, z^{(1)}) = z^{(1)} - h^{(1)}(x^{(1)}, y^{(1)}) \exp(i\omega t) ; (x^{(1)}, y^{(1)}) \in D^{(1)},$$

$$\left| h^{(1)} \right| << 1, \left| \frac{\partial h^{(1)}}{\partial x^{(1)}} \right| << 1,$$
(1)

be the equation of the oscillating wing (we neglect the thickness of the wing).

In the sequel $\rho_0 Re(f\exp(i\omega t))$ is the jump of the pressure over the oscillating wing (ρ_0 is the density of the fluid at rest), ω is the frequency of the oscillation, V_0 is the translation velocity of the unperturbed flow with respect to the $Ox^{(1)}y^{(1)}z^{(1)}$ frame of refference, $\varpi=\frac{b}{a}$ is the aspect ratio.

We introduce the dimensionless functions and variables

$$h(x,y) = \frac{h^{(1)}(x^{(1)},y^{(1)})}{a}, \ \tilde{\omega} = \frac{\omega a}{V_0}, \ \tilde{f}(x,y) = \frac{f(ax,by)}{V_0^2}, \ x_0 = x - \xi, \ \ y_0 = y - \eta,$$

In the framework of the linearized theory the lifting surface equation for oscillatory airfoils is [1]:

$$\frac{\varpi}{4\pi} \int \int_{D}^{*} \tilde{f}(\xi, \eta) \exp(-i\tilde{\omega}x_{0}) \left(\int_{-\infty}^{x_{0}} \frac{\exp(i\tilde{\omega}u)}{(u^{2} + \varpi^{2}y_{0}^{2})^{3/2}} du \right) d\xi d\eta =
= -\left(\frac{\partial h(x, y)}{\partial x} + i\tilde{\omega}h(x, y) \right), \ D = \{(x, y); (ax, by) \in D^{(1)}\}.$$
(2)

In the sequel we are going to put into evidence the singularities of the kernel. We have

$$\int_{-\infty}^{x_0} \frac{\exp(i\tilde{\omega}u)}{(u^2 + \varpi^2 y_0^2)^{3/2}} du = K^{(1)}(x, y; \xi, \eta) + K^{(2)}(x, y; \xi, \eta) + K^{(3)}(x, y; \xi, \eta),$$

where the kernel

$$K^{(1)}(x, y; \xi, \eta) = \frac{1}{\varpi^2 y_0^2} \left(1 + \frac{x_0}{\sqrt{x_0^2 + \varpi^2 y_0^2}} \right),$$

has a strong singularity, the kernel

$$K^{(2)}(x, y; \xi, \eta) = -\frac{i\widetilde{\omega}}{\sqrt{x_0^2 + \varpi^2 y_0^2}} + \frac{\widetilde{\omega}^2}{2} \ln\left(-x_0 + \sqrt{x_0^2 + \varpi^2 y_0^2}\right),$$

has weak singularities and the kernel

$$\begin{split} K^{(3)}\left(x,y;\xi,\eta\right) &= \frac{\widetilde{\omega}}{\varpi\left|y_{0}\right|} \left(K_{1}\left(\widetilde{\omega}\varpi\left|y_{0}\right|\right) - \frac{1}{\varpi^{2}y_{0}^{2}} - \frac{\widetilde{\omega}^{2}}{2}\ln\frac{\widetilde{\omega}\varpi\left|y_{0}\right|}{2}\right) + \\ &+ i\frac{\pi}{2}\frac{\widetilde{\omega}}{\varpi\left|y_{0}\right|} \left(I_{1}\left(\widetilde{\omega}\varpi\left|y_{0}\right|\right) - L_{-1}\left(\widetilde{\omega}\varpi\left|y_{0}\right|\right) + \frac{2}{\pi}\right) + \frac{\widetilde{\omega}^{2}x_{0}}{2\sqrt{x_{0}^{2} + \varpi^{2}y_{0}^{2}}} + \frac{\widetilde{\omega}^{2}}{2}\ln\frac{\varpi}{2} + \\ &+ \int_{0}^{x_{0}} \frac{\exp(i\widetilde{\omega}u) - 1 - i\widetilde{\omega}u + \frac{1}{2}\widetilde{\omega}^{2}u^{2}}{(u^{2} + \varpi^{2}y_{0}^{2})^{3/2}}du, \end{split}$$

has no singularity. (I_1 and K_1 are Bessel functions and L_{-1} is a Strouve function.)

THE PROPULSIVE FORCE FOR A DELTA WING

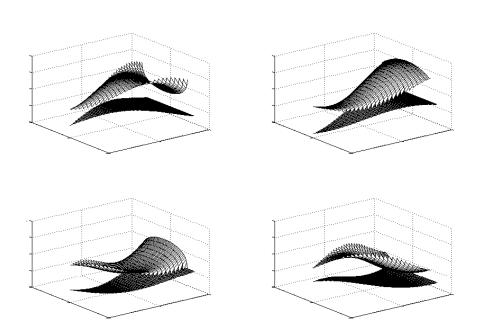
Employing for each type of kernel adequate quadrature formulas, we discretize (2) obtaining the values of \tilde{f} in the nodes of the grid. With the the formulas

$$C_p(x^{(1)}, y^{(1)}, t) = Re[\tilde{f}(x, y) \exp(i\omega t)], \ C_D(t) = -2 \int \int_D n_x C_p(ax, by, t) dx dy, \ \tilde{C}_D = \frac{1}{T} \int_0^T C_D(t) dt$$

where T is the period of the oscillation, we calculate the pressure coefficient field, the drag coefficient and the average drag coefficient. Considering the oscillating delta wing whose equation is

$$h(x,y) = \alpha \exp(i\widetilde{\omega}_1 x), \qquad (x,y) \in D = \{(x,y); 0 < y < |x|, 0 < x < 1\},$$

we calculate the average drag coefficient and we notice that if $\tilde{\omega}$ surpasses a certain critical value, the average drag coefficient becomes negative i.e. there appears a *propulsive force*. In the following figure we present the oscillating wing (below) and the pressure coefficient fields (above) for the values of the nondimensional time $\frac{V_0}{a}t \in \{1,1,2,4\}$ and for the nondimensional frequencies $\tilde{\omega} = \pi/2$, $\tilde{\omega}_1 = 6\pi/5$. We considered $\varpi = 1/8$.



References

[1] D. Homentcovschi, Theory of the lifting surface in unsteady motion in an inviscid fluid, Acta Mechanica 27, 205-216, 1977.