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Summary In this paper we show that the oscillatory motion of an airfoil (wing) in an incompressible inviscid fluid can
determine the apparition of a propulsive force. To this aim we discretize the lifting surface equation and calculate the
pressure coefficients. Integrating, we calculate the average drag coefficient which for a range of values of the frequency
may happen to be negative. The oscillatory motion of a wing can model the motion of fishes and birds. It is also of
great importance in aeroelasticity.

THE INTEGRAL EQUATION

We consider a system of coordinates Oz(My(M) 21 related to the wing and we introduce the dimensionless space
(SR EY)

coordinates (x,z) = <x7 Z) , taking the wing length a as reference length along the vertical direction
a ' a

(OzM-axis direction) and along the direction of the unperturbed uniform flow (OzM-axis direction). We
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introduce also the dimensionless space coordinate y = yT’ taking the wing half-span b as reference length

along the Oy-axis direction. We denote by D) the wing projection on the Oz(My(M) -plane. Let
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be the equation of the oscillating wing (we neglect the thickness of the wing).
In the sequel poRe(f exp(iwt)) is the jump of the pressure over the oscillating wing ( po is the density of the
fluid at rest), w is the frequency of the oscillation, Vj is the translation velocity of the unperturbed flow with
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respect to the Oz(My(M 2 frame of refference, w = — is the aspect ratio.
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We introduce the dimensionless functions and variables
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In the framework of the linearized theory the lifting surface equation for oscillatory airfoils is [1]:
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In the sequel we are going to put into evidence the singularities of the kernel. We have

o exp(iou)
/m @+ ot = KW (,y;:6,m) + K@ (2,4:6,0) + K@ (2,5;¢,7)

where the kernel
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has a strong singularity, the kernel
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has weak singularities and the kernel
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has no singularity. (I; and K; are Bessel functions and L_; is a Strouve function.)
THE PROPULSIVE FORCE FOR A DELTA WING

Employing for each type of kernel adequate quadrature formulas, we discretize (2) obtaining the values of f in
the nodes of the grid. With the the formulas
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where T is the period of the oscillation, we calculate the pressure coefficient field, the drag coefficient and the
average drag coefficient. Considering the oscillating delta wing whose equation is

h(z,y) = aexp(iwvix), (z,y) € D={(z,y);0<y < |z],0 <z <1},

we calculate the average drag coeflicient and we notice that if @ surpasses a certain critical value, the average
drag coefficient becomes negative i.e. there appears a propulsive force. In the following figure we present the
oscillating wing (below) and the pressure coefficient fields (above) for the values of the nondimensional time

2t € {1,1,2,4} and for the nondimensional frequencies @ = /2, &, = 67/5. We considered w = 1/8.
a
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