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Summary Many respiratory diseases cause the occlusion of pulmonary airways with viscous fluid. The subsequent airway reopening
is assumed to occur by the propagation of an air finger into the liquid-filled airways. We investigate the behavior of the air finger as
it reaches a single bifurcation and determine under what conditions the finger branches symmetrically. If the fluid pressure in both
channels ahead of the branching finger are equal, the finger will preferentially reopen a single path through the branching network. If
the ends of the channels are capped with compliant chambers, representing the lung elasticity, the pressure required to drive the air
finger can be dominated either by viscous losses or by elastic forces. Below a critical velocity, elastic forces dominate and symmetric
branching is predicted to occur. We augment our theoretical model with an experimental study in which the problem is investigated
using microfluidic channels.

MOTIVATION: THE LUNG AND THE MODEL

Many respiratory diseases, such as the Respiratory Distress Syndrome, may cause the occlusion of the pulmonary airways
with viscous fluid. Occluded airways are believed to be reopened by a propagating air finger [1]. Previous models of
pulmonary airway reopening (e.g. [2]) have only considered the propagation of air fingers in individual airway branches.
Since the airways of the lung branch frequently, the question arises if the propagating air finger will reopen the whole
lung tree or simply follow a single path, keeping most of the lung occluded.

We address this question at the level of a single bifurcation by modeling the flow of an air finger as it reaches a branching
point, as shown in Fig. 1. An inviscid air finger propagates along a parent tube! of cross sectional area .A. The finger is
driven by the injection of air at a constant flow rate, (), and it displaces viscous fluid of viscosity, p. The interfacial tension
is 0. Downstream of the bifurcation, the lung’s elasticity is represented by two compliant chambers whose volumetric
elastic modulus is given by k.

Figure 1. Model of a propagating finger through a single bifur- ~ Figure 2. Experimental bifurcating channel, built using standard
cation. microfluidic technology.

MATHEMATICAL FORMULATION AND LINEAR STABILITY ANALYSIS

The flow rates in the two daughter tubes are given by Q); = U; A;, where A; is the cross-sectional area occupied by the air
finger in daughter tube 7. The sum of the flow rates in the daughter tubes must equal the incoming flux @). The velocity of
the finger tips is given by U; = —dL;/dt where L; is the length of the occluded section in daughter tube . In the absence
of inertial and gravitational effects, A4; is given by A; = A a(Ca;), where a(Ca;) is a function of the capillary number
Ca; = pU; /o and was computed in reference [3].

In each of the daughter branches, the pressure drop across the occluded section has three components:

e The viscous pressure drop through the liquid-filled section, Apys;sc = RL;(t)Q;(t), where R o< p1/a* depends on
the geometry and the viscosity of the fluid.

o The capillary pressure drop across the curved tip of the air finger, Apcap = C(Ca;). Numerical results for Apcap
are available from reference [3].

e The pressure pe1ast in the elastic end-chambers. We assume that pe1ast depends only on the injected volume such
that perase = P(Voi + [ Qi(r)dr) and we assume that k = dP(V)/dV = const.

ITo facilitate comparisons with the experiment, we consider the parent and daughter tubes to be rigid with square cross-section and constant cross-
sectional area A = 4a?; the analysis is easily extended to other geometries.



Since the air fingers in both daughter branches are subject to the same driving pressure pg.(¢), we have

t
pd,_(t) = Cc(Uy) +RLi(t)Qi(t) —i—P(Voi +/ Qi(T)dT) for +=1,2. (1)
0

We differentiate Eq. 1 with respect to ¢, and use U; = —dL;/dt and of ]
Q1 + Q2 = Q, to obtain a set of five ordinary differential equations with LT et T T
five unknowns: pg,, U1, U, L1 and Lo. These equations admit a symmetric or
solution of the form U; = U; the stability of this solution to small perturba- w 'f
tions determines if the finger branches symmetrically or propagates along a 05F
single path. 0 asymmetric

A stability criterion for the symmetric solution is obtained using standard S

linear perturbation theory. Asymmetric perturbations are predicted to grow 05F
for positive values of the function 1k e 16
K da(C K
F(Ca) = a(Ca) <2 - —> 4+ cadC) (1 - —> , )
Ca dCa Ca Figure 3. Variation of the function I with cap-

where Ca = ild /o is the capillary number based on the propagation ve- ilary number Ca: F* < 0 corresponds to sta-

locity of the symmetrically branching fingers; the dimensionless parameter
K = kp/Ro indicates the importance of the elastic forces relative to vis-
cous losses.

Figure 3 shows plots of F'(Ca) for a range of values of the parameter K. For every value of K, there exists a critical value
of Ca above which F' > 0, and therefore symmetric solutions are unstable. Two special cases are noteworthy:

ble symmetric branchings, while ¥ > 0 cor-
responds to asymmetric solutions. The dashed
lines ignore capillary effects.

1. If we set a(Ca) = 1 and C(Ca) = 0 and thus ignore the capillary effects, the predictions for F'(Ca) are given by the
dashed lines in Fig. 3. In this case it is possible to derive an explicit prediction for the critical velocity, U. = k/2R,
such that for i/ > U, the propagation is asymmetric, while U < U, yields symmetric propagation. Figure 3 shows
that U, is an excellent approximation for the critical velocity predicted by the full analysis.

2. If we further ignore the compliance terms by setting & = 0, we find that /' > 0 and the branching is always
asymmetric.

EXPERIMENTAL METHODS AND PRELIMINARY RESULTS

The above mathematical model describes an actual experimental system, built
using standard microfluidic soft lithography methods and shown in Fig. 2. The
channel has a square cross-section with side 2a = 100 ;m and total length 4 cm.
It is initially filled with 100 cSt Silicone Oil, into which a water-fluorescein
mixture is injected using a computer-controlled micropump. The injection rate
varies in the range 0.3 —3 pL/min. The elasticity of the end chambers is achieved
through the use of thin membranes with variable thickness and diameter, so as
to yield different values of K. The fluorescent finger is followed as it advances
through the bifurcation for different flow rates, in order to determine the sym-
metry of the branching.

A preliminary experimental image is shown in Fig. 4. Here, the end-chambers
have no compliance but are open to the atmosphere, corresponding to special
case 2 above. We obtain experimentally that the branching is always asymmetric, as expected from the analysis. Further
experiments are currently being conducted with the elastic chambers to verify the theoretical predictions above.

Figure 4. Asymmetric branching in open-
ended microchannel

CONCLUSIONS

Our model predicts two distinct régimes for air fingers penetrating liquid-filled networks. The behavior that is chosen
depends on the relative dominance of the viscous vs. the elastic forces. In the case when viscous effects are dominant, an
air finger will follow a linear path in the network, leaving the other branches occluded. Future work aims to investigate the
application of similar models to real lungs in order to understand the reopening of fluid-filled airways in living organisms.
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