|
|
A New Finite Element Formulation Based on the Theory of a Cosserat Point
| E. F. I. Boerner (1), S. Loehnert (1), M. B. Rubin (2), P. Wriggers (1) | | 1. IBNM, University of Hanover, Hannover, Germany | | 2. Technion, Israel Institute of Technology, Haifa, Israel |
|
|
The theory of Cosserat points is the basis of a finite element formulation,
that recently was presented by NADLER & RUBIN (2003). First attempts have
revealed, that this formulation is free of showing undesired locking or
hourglassing-phenomena. It additionally shows excellent behaviour for any
type of incompressible material, for large deformations and sensitive
structures such as plates or shells. Within the theory of Cosserat points,
the position vectors are described through director vectors. The special
choice of the director vectors enables to split the deformation into
homogeneous and inhomogeneous parts, which allows the use of stiffnesses that
correspond to different deformation modes.
Currently, analytical solutions for the calculation of stiffnesses for
different modes are used. They are based on a parallelepiped shaped reference
element, which is at present the major drawback to this formulation. This
work gives insight to the possibilities of the Cosserat point element as well
as first approaches on overcoming the difficulty of initial element
geometries, that differ strongly from the shape of a parallelepiped.
|