Modeling of Thermo-Damage Coupling in Anisotropically Damaged Materials

Sumio Murakami⁽¹⁾, Mamoru Mizuno⁽²⁾

- (1) Aichi University of Technology, Aichi, Japan
- (2) Akita Prefectural University, Akita, Japan

A current damaged configuration B_t and the corresponding fictitious undamaged configuration B_f of a Representative Volume Element (RVE) characterized by a second rank anisotropic damage tensor D_{ij} are first postulated. Then, by taking account of the effective undamaged surface element of B_f , the heat flux vector q_i^C due to heat conduction in B_t is formulated. The heat flux q_i^R through cavities is also formulated by calculating the gray-body radiation through a row of cavities in RVE of B_t . The heat conduction law for overall heat flux $q_i = q_i^C + q_i^R$ and the equation of heat conduction in anisotropically damaged materials are expressed by defining the equivalent thermal conductivity tensor L_{ij}^{EQ} in the damaged material. The tensorial nature of the resulting equations and the variation of L_{ij}^{EQ} due to the development of anisotropic damage D_{ij} are discussed. Finally, the resulting equations are applied to the analysis of anisotropic creep damage problems under thermo-mechanical loading.

View the extended summary