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ABSTRACT 
 

Systematic set of emulsification experiments is performed to elucidate the role of 

several factors, which control the process of oil drop breakage during emulsification in 

turbulent flow. The experiments are performed at high surfactant concentration and low oil 

volume fraction to eliminate the contribution of drop-drop coalescence. As starting oil-water 

premixes we use emulsions containing monodisperse oil drops, which are generated by the 

method of membrane emulsification. By passing these premixes through a narrow-gap 

homogenizer, working in turbulent regime, we study the evolution of the number 

concentration of drops with given diameter, as a function of emulsification time. The 

experimental data are analyzed by using an original kinetic scheme, which takes into account 

the generation of drops of a given size (as a result of breakup of larger drops) and their 

disappearance (as a result of their own breakup process). The performed analysis allowed us 

to determine the rate constant of the process of drop breakup, as a function of drop diameter, 

hydrodynamic conditions during emulsification, and viscosity of the drop phase. The breakup 

rate constants, determined in this way, are compared with available theoretical expressions in 

the literature and their modifications. The comparison shows that the breakup rate constant 

can be considered as a product of: (a) frequency of collisions between drops and turbulent 

eddies, and (b) efficiency of drop breakup, which is related to the energy required for drop 

deformation and subdivision into smaller drops. The energy for drop deformation contains 

two contributions, originating from the drop surface extension and from the viscous 

dissipation inside the drop, respectively.    

 
 
 
 
 
 
 
 
 
 
 
 
 

Schematic presentation of the processes of drop breakage. 
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1. Introduction. 
 

The process of emulsification can be considered as consisting of two “elementary 
reactions”: drop breakup leading to formation of several smaller drops from a larger one, and 
drop-drop coalescence leading to formation of larger drop from two smaller drops. The 
evolution of the drop-size distribution, during emulsification, depends on the competition 
between these elementary processes [1-6].  

For quantitative analysis of these processes it is convenient to study them separately. 
Several studies were performed to clarify the main factors governing the steady-state drop 
size distribution in O/W emulsions, with very low oil volume fraction (lean emulsions), in 
which the contribution of drop-drop coalescence is negligible [7-13]. The classical studies of 
emulsification in turbulent flow by Kolmogorov [14] and Hinze [15] showed that the maximal 
diameter of stable drops is determined by the balance between the fluctuations in the 
hydrodynamic pressure of the continuous phase (which act on drop surface and thus lead to 
drop deformation), and the drop capillary pressure, which opposes drop deformation. A 
simple theoretical expression was derived in these studies, which relates the maximum 
diameter of stable drops with the rate of energy dissipation, ε, which is the main characteristic 
of the turbulent flow, and with the interfacial tension of the drops, σOW [14-15]. This 
expression was verified experimentally by Sprow [7], under various hydrodynamic 
conditions, for oil drops with viscosity close to that of the continuous aqueous phase.  

Further development of the theory for more viscous drops, and the respective 
experimental verification for emulsification in stirred tanks, was presented by Lagisetty et al. 
[11] and Calabrese et al. [8-10]. Lagisetty et al. [11] suggested and tested a theoretical model 
for the maximum diameter of stable drops in turbulent flow, by including the possible effects 
of the non-Newtonian rheological behavior of the drop phase and of the time required for drop 
deformation and breakage. Similarly to Kolmogorov [14] and Hinze [15], Lagisetty et al. [11] 
used a stress balance to derive its expression for the maximum drop diameter. Calabrese et al. 
[8-10] used another approach, in which the energy required for drop deformation (for 
Newtonian drops) was compared to the kinetic energy of the turbulent eddies. Large set of 
experimental results for the effects of drop viscosity and interfacial tension on the maximum 
drop diameter is presented in the papers by Calabrese et al. [8-10], and a good agreement with 
the theoretical expressions was observed. For the hydrodynamic conditions in stirred tanks, 
like those used in refs 8-10, the interfacial tension was found to be the main factor, 
determining the mean drop diameter, for oils with viscosity between 1 and 100 mPa.s, 
whereas the oil viscosity was the predominant factor for more viscous oils.  

Along with the steady-state drop size, the rate of drop breakage is another 
characteristic of the emulsification process, which is of great interest from both fundamental 
and practical viewpoints. Two main types of theoretical models for the rate of drop breakage 
in turbulent flow were considered in the literature. In the first type, the rate constant of drop 
breakage is constructed as a product of the characteristic frequency of drop deformation 
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(assumed equal to the reciprocal time of drop deformation) and the efficiency of drop 
breakage [1]. In the other type of models, the rate constant of drop breakage is considered as a 
product of the eddy-drop collision frequency and the efficiency of drop breakage [3-4]. In 
both cases, the efficiency of drop breakage is expressed as an exponent, including the ratio of 
the surface energy for drop deformation and the kinetic energy of the turbulent eddies, by 
analogy with the activation energy and the molecular kinetic energy in chemical kinetics. For 
determination of the eddy-drop collision frequency, Prince and Blanch [4] assumed that the 
drops and eddies of the same size behave as molecules in the kinetic theory of gases, and their 
mean velocities were calculated and used to find the collision frequency. Further development 
of this model was suggested in the same study by Prince and Blanch [4], and in a more recent 
study by Tsouris and Tavlaridies [2], who assumed that the drops could break even after 
collision with eddies having smaller size than the drops. Recently, Narsimhan [16] modified 
this model by describing the transport of drops and eddies through their turbulent diffusion 
coefficients. Further explanations about some of these models are given in section 6 below.  

The models of the “elementary” process of drop breakage, described in the previous 
paragraph, were implemented in the so-called “population balance equation” for the temporal 
evolution of the drop-size distribution [1-4]. The population balance equation was tested with 
emulsification experiments, in the absence of surfactants, in which both drop breakage and 
coalescence were simultaneously present. Thus the verification of the drop breakage models 
was indirect, by using experimental data for the evolution of the mean drop diameter during 
emulsification in stirred tanks. Since the process of drop coalescence is still poorly understood 
[16], the used equations in the population balance model included expressions for the rate of 
drop-drop coalescence, which contained several adjustable parameters. Therefore, it was 
impossible to perform a direct, unambiguous verification of the drop breakage models in these 
studies, due to the interference between drop breakage and drop coalescence.  

To the best of our knowledge, the only experimental data for the rate of drop breakage 
in the absence of coalescence, is presented by Narsimhan et al. [12-13]. In these studies [12-
13], the change of drop-size distribution in the course of emulsification in stirred tanks was 
used to determine the breakage rate constant, as a function of drop volume. To interpret the 
experimental data, the so-called “similarity assumption” was used, which relates the 
probability for formation of daughter drops of given size with the dependence of the rate 
constants on drop volume (see refs 12-13 for further explanation). The experiments in refs 12, 
13 were performed with oils having viscosity close to that of the continuous phase, so that the 
effect of oil viscosity on the kinetics of drop breakage was not studied.  

In the current paper we describe emulsification experiments with oil-in-water 
emulsions aimed to further elucidate the role of several factors in the process of drop breakup 
in turbulent flow. The experiments are performed at relatively low oil volume fraction and 
high surfactant concentration to avoid the effect of drop coalescence. The studied emulsions 
are prepared with three relatively viscous oils – two silicone oils with viscosities 50 and 100 
mPa.s, respectively, and soybean oil with viscosity 50 mPa.s. As starting oil-water premixes 
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we use emulsions containing monodisperse oil drops, which are generated by the method of 
membrane emulsification. By passing these premixes through a narrow-gap homogenizer, we 
determine the evolution of the drop-size distribution, as a function of emulsification time. The 
experimental data are analyzed by using a new kinetic scheme, which allows us to evaluate 
the dependence of the breakage rate constant on drop diameter. The possibility for formation 
of several “daughter” drops with various sizes is taken into account. The obtained values of 
the drop breakage constants are compared to theoretical models and, on this basis, some 
conclusions about the mechanism of drop breakage are drawn.  

 
 
2. Materials and methods. 
 
2.1. Materials. We used nonionic low molecular-mass surfactant polyoxyethylene-20 

hexadecyl ether (Brij 58, product of Sigma), with concentration of 1 wt %, which is well 
above the critical micelle concentration of this surfactant (CMC ≈ 10-5 M ≈ 0.001 wt %). The 
concentration of NaCl was 150 mM. The aqueous solutions were prepared with deionized 
water from a Milli-Q Organex system (Millipore). 

As dispersed phase we used several oils: soybean oil (SBO, commercial product) with 
viscosity of 50 mPa.s; silicone oil SH200C with viscosity 50 mPa.s (product of TDCS); and 
silicone oil Silikonöl AK100 (product of BASF) with viscosity 96 mPa.s. SBO was purified 
by passing it through a glass column, filled with Florisil adsorbent. The silicone oils were 
used as received. 
 

2.2. Methods for emulsion preparation. 
 All emulsions, described in this chapter, were obtained in a two-step procedure, which 
includes two different experimental techniques: membrane emulsification to prepare an oil-
water premix, and emulsification in turbulent flow by using a narrow-gap homogenizer. The 
exact emulsification protocol is described in section 2.3. In the following two subsections we 
present a brief description of the used emulsification methods. 
 

2.2.1. Membrane emulsification.  
This technique was applied to prepare initial emulsions (oil-water premixes) with 

relatively narrow drop size distribution. The method is based on the use of microporous 
membranes with pores of uniform size [17-18]. The membrane separates two immiscible 
liquids – dispersed phase (SBO, hexadecane or silicone oil in our experiments) and 
continuous phase (1 wt % Brij 58 + 150 mM NaCl). Dispersed phase is emulsified, by passing 
it through the membrane pores under pressure, into the continuous phase. In our experiments, 
we used a laboratory Microkit membrane emulsification module from Shirasu porous glass 
(SPG) Technology (Miyazaki, Japan) [19-21], which works with tubular glass membranes (of 
outer diameter 10 mm, thickness 1 mm, and working area of approximately 3 cm2). Two 
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membranes, with mean pore size of 3.2 µm (denoted as SPG3.2 in the text) and 10.7 µm 
(denoted as SPG10.7), were used for preparing emulsions with two different drop size 
distributions. The working pressure difference across the membranes was 2.9×104 Pa for 
SPG3.2, whereas for SPG10.7 it was varied between 0.98 and 3.92 kPa, depending on oil 
viscosity. 
 
 2.2.2. Narrow-gap homogenizer. A custom-made modification of the narrow-gap 
homogenizer was used for the second stage of the emulsification process. A detailed 
description of this homogenizer is given in Chapter 3 of the Report - here we describe briefly 
only its most important components.   

The apparatus consists of pipes, a turn-cock, and a cylindrical mixing chamber, 
equipped with a processing element, which has narrow slits inside the chamber. The slits in 
the processing element ensure high density of power dissipation, which leads to drop 
deformation and breakage inside the mixing chamber. For the experiments, discussed in this 
chapter, we used the processing element GW395-2C, which has two consecutive slits with 
gap-width of 395 µm. The volume, in which the turbulent dissipation of energy takes place, 
VDISS, is estimated to be 1.72×10-7 m3 for this processing element [22-23]. The construction of 
GW395-2C is described in Chapter 3 and is schematically shown in Figure 3.1A. 

In the used equipment, the oil-water mixture is forced to pass through the 
emulsification element by applying a certain pressure at the inlet of the homogenizer. The 
driving pressure is provided by a gas N2-bottle, connected by a Tygon hose to the fitting 
element between the vessel and the ingoing pipe for the emulsion, on one side, and the turn-
cock, on the other side (see Figure 3.2 in Chapter 3). A pressure transducer is installed close 
to the gas bottle outlet, which enables precise regulation of the applied pressure during the 
emulsification (the pressure is maintained with an accuracy of ± 500 Pa in a given 
experiment). In several series of experiments the driving pressure was 1×105 Pa ± 800 Pa, 
whereas in other experimental series the pressure was higher, 2.2×105 Pa, to study the effect 
of hydrodynamic conditions on breakage rate constant. The construction of the used 
homogenizer enables emulsification in a discontinuous mode only - after each pass of the oil-
water mixture through the homogenization element, the pressure is released and the emulsion 
is manually poured back into the inlet of the device for the next pass. The operating 
conditions, during emulsification of the systems studied, are given in Table 1. The oil 
viscosity and the interfacial tension, shown in Table 1, are measured by methods described in 
sections 2.5 and 2.6. 
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Table 1. Operating conditions during emulsification with processing element GW395-2C and 
VDISS = 1.72×10-7 m3. The continuous phase is 1 wt % Brij 58 + 150 mM NaCl (ρc = 1.0044 
g/cm3). The mean volume-surface diameter of the initial premix, prepared by membrane 
emulsification, d32

INI; type of oil phase; oil volume fraction, Φ; viscosity of the oil phase, ηD; 
interfacial tension, σOW; applied pressure, p; flow rate, Q; calculated value of the density of 
power dissipation, ε; and the residence time, θ = VDISS/Q; are presented.  

Hydrodynamic conditions 
d32

INI, 
µm 

Oil phase Φ 
ηD, 

mPa.s 
σOW, 

mN/m p×105, 
Pa 

Q×10-3, 
m3/s 

ε×105, 
J/(kg.s) 

θ, 
ms 

32.6 SBO 0.01 50 7.5 ± 0.1 0.9807 0.086 0.49 2.0 

34.0 SBO 0.01 50 7.4 ± 0.1 2.20 0.15 1.92 1.1 

35.2 Silicone oil 0.006 50 10.5 ± 0.1 1.00 0.092 0.53 1.9 

34.4 Silicone oil 0.003 96 10.3 ± 0.1 1.01 0.096 0.56 1.8 

11.1 SBO 0.0024 50 7.4 ± 0.1 2.20 0.16 2.05 1.1 

 
 

2.3 Procedure for emulsion preparation. 
 Six series of experiments were performed, following a two-stage protocol of emulsion 
preparation: 

First, a monodisperse initial emulsion (premix) was prepared by membrane 
emulsification. About 10 mL of the used oil was passed through the membrane pores, under a 
certain pressure, into 990 mL of 1 wt % aqueous solution of Brij 58 (+ 150 mM NaCl). In the 
experiments with membrane SPG10.7 monodisperse emulsions with an initial diameter d32

INI 
= 33.2 ± 2.0 µm were obtained (see Table 1). Monodisperse initial emulsions with mean drop 
diameter of 11.1 µm were prepared with membrane SPG3.2. The pressure difference across 
membrane SPG3.2 was maintained at 29 ± 1 kPa, whereas the pressure across membrane 
SPG10.7 was 4 ± 1 kPa. The initial monodisperse emulsion, prepared by membrane 
emulsification, was gently homogenized by hand-tumbling and samples for determination of 
drop size distribution were taken with a pipette. The drop size distribution was determined by 
optical microscopy, as described in section 2.4 below. 

The second homogenization step was accomplished by multiple passes of the emulsion 
through the narrow-gap homogenizer (see subsection 2.2.2). In each experiment, 100 passes 
of the emulsion through the homogenizer were performed. After each of the first 10 passes, 
and then after each fifth pass, at least two emulsion samples were taken for determination of 
the drop size distribution. Thus we determined the drop size distribution as a function of the 
number of passes (viz. of the emulsification time).  
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2.4. Determination of drop size distribution. 
Drop size distribution in the emulsions was determined by optical microscopy. The oil 

drops were observed and video-recorded in transmitted light by means of microscope 
Axioplan (Zeiss, Germany), equipped with objective Epiplan, ×50, and connected to a CCD 
camera (Sony) and VCR (Samsung SV-4000). The diameters of the oil drops were measured, 
one by one, from the recorded video-frames, by using custom-made image analysis software, 
operating with Targa+ graphic board (Truevision, USA). 

The mean volume-surface diameter, d32, was calculated from the measured drop 
diameters by using the relation: 
 

∑
∑

=

i
ii

i
ii

dN

dN
d

2

3

32      (1) 

 
where Ni is the number of drops with diameter di. 
 

2.5. Measurements of oil viscosity.  
The viscosity of SBO and of silicone oils was measured on a Brookfield Rheoset 

laboratory viscometer, model LV (Brookfield Engineering Laboratories, Inc.), controlled by 
computer. Spindle CP-52 (cone-plate geometry, cone angle = 3° and radius 1.2 cm, viscosity 
range 50-105 mPa.s) or spindle CP-40 (cone-plate geometry, cone angle = 0.8° and radius 2.4 
cm, viscosity range 10-103 mPa.s) was used. These measurements were performed at room 
temperature, 25 ± 1 °C.  
 

2.6. Measurement of interfacial tension.  
The oil-water interfacial tension was measured by using a drop-shape-analysis on 

pendant drops from the surfactant solutions, immersed in a bulk oil phase. The measurements 
were performed at 27 ± 0.5 °C on a Drop Shape Analysis System DSA 10 (Krüss GmbH, 
Hamburg, Germany). The mass density of the aqueous solutions and of the used oils was 
measured on a density meter DMA48 (Paar Scientific, UK) at 27 ± 0.1 °C. The accuracy of 
mass density determination is ± 0.001 g/cm3. 
 
 

3. Experimental results for the mean drop size versus number of passes of the 
emulsion through the homogenizer. 
 
 In this section we present experimental results about the mean volume-surface 
diameter, d32, as a function of the number of passes of the emulsion through the narrow-gap 
homogenizer, u, for the various systems studied. The kinetic scheme used for calculation of 
the breakage rate constant, kBR, is described in the next section. Experimental data about the 
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drop size distribution versus the number of passes, along with the procedure for interpretation 
of these data, are presented in section 5. The theoretical models used to analyze the obtained 
dependence of kBR on drop diameter are described in section 6.  
 
 3.1. Mean drop diameter, d32, as a function of the viscosity of the dispersed phase, 
ηD. 
 To study the effect of ηD on the evolution of the drop size distribution during 
emulsification, we performed three series of experiments with different oils, SBO with ηD = 
50 mPa.s and two silicone oils with viscosities of 50 and 96 mPa.s, respectively.  
 The emulsions were prepared at equivalent operating conditions, following the 
procedure described in section 2.3. The initial emulsions were produced with membrane 
SPG10.7 and the mean volume-surface drop diameter was d32

INI ≈ 34 µm, see Table 1. The 
second homogenization step is performed at a driving pressure p ≈ 1×105 Pa, which 
corresponds to density of power dissipation ε ≈ 0.53×105 J/(kg.s). The mean drop diameter, 
d32, obtained after passing the emulsion 100 times through the narrow-gap homogenizer, is 
presented in Table 2 for each of the studied systems. The results show that the initial mean 
drop size decreases about 2.6 times for the more viscous silicone oil (ηD = 96 mPa.s) and 
about 3.4 times for the oils with ηD = 50 mPa.s. 

To compare the experimentally obtained values of d32 with the theoretical predictions 
of the theory of turbulent emulsification, we calculated the so-called “Kolmogorov-Hinze 
diameter”, dK [14-15,22-23]: 
 

2 5 3 5 3 5
OW Cd − −≈ ε σ ρ     (2) 

 
Here ρC = 1.0044×103 kg/m3 is mass density of the continuous phase, ε is rate of energy 
dissipation defined per unit mass and σOW is interfacial tension. The calculated values of dK 
are also presented in Table 2. 
 
 
Table 2. Experimental values of the final mean volume-surface diameter, d32, for oils with 
different viscosities. The aqueous phase contains 1 wt % Brij 58 and 150 mM NaCl. The 
emulsification is performed at p ≈ 1×105 Pa with a processing element GW395-2C. The 
values of dK are calculated from eq 2. 

Oil phase ηD, 
mPa.s 

σOW,  
mN/m d32

INI, µm d32, µm dK, µm 

silicone oil 96 12.97 12.8 

silicone oil 50 
10.6 ± 0.3 

10.8 13.6 

SBO 50 7.49 

≈ 34.0 

9.4 11.2 
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 The differences in the calculated values of dK originate from the slightly different 
values of ε in the various experiments and from the different interfacial tensions, σOW, of the 
oils.  
 As seen from Table 2, the experimental values of the final mean drop diameter, d32, 
are in a good agreement with the theoretically predicted values of dK. The ratio d32/dK is about 
0.8 for the systems with ηD = 50 mPa.s and about 1.0 for the emulsion with ηD = 96 mPa.s.  

The experimental values of d32 are plotted in Figure 1 as a function of the number of 
passes, u. The respective values of dK are also indicated in the figure by horizontal lines. As 
seen from the figure, d32 gradually decreases with the number of passes. One observes that the 
decrease of d32 occurs in a very similar manner for the emulsions prepared with oils of similar 
viscosity (SBO and silicone oil with 50 mPa.s). Most rapidly d32 diminishes during the first 
ten passes: from 33 µm down to 19 µm for the SBO-emulsion and from 35 µm down to 18 
µm for the silicone oil. During the next thirty passes (from u = 10 to u = 40) a further 
reduction of the mean drop size from 19 µm down to 12.5 µm is observed for the SBO-
emulsion. Afterwards, d32 remains almost constant until the seventieth pass, and finally, a 
very slow decrease from 12.7 µm down to 9.4 µm is observed during the last 30 passes. For 
the silicone oil emulsion, a gradual decrease of d32 from 18 µm after the 10th pass down to 
11.7 µm after the 60th pass is observed, followed by a steady-state drop size distribution with 
d32 ≈ 11 µm during the last 40 passes. 
 For the emulsion, prepared with silicone of higher viscosity, ηD = 96 mPa.s, the mean 
drop size decreases much slower during the first ten passes, from 34 µm down to 26 µm. 
Afterwards, d32 continues to diminish, reaching the value of 13 µm at the end of the 
emulsification, see Figure 1. Obviously, the drop breakage process is much slower for the 
more viscous oil. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Experimentally obtained mean volume–surface diameter, d32, as a function of the 
number of passes, u, and theoretically calculated dK from eq 2 for 1 wt % Brij 58 -stabilized 
emulsions with different oil phases. The solutions contain 150 mM NaCl. Emulsification at p 
≈ 1×105 Pa with a processing element GW395-2C. 
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3.2. Mean drop diameter, d32, as a function of applied pressure. 

 In this section we present the experimental results for two SBO-in-water emulsions, 
prepared at two different driving pressures, p = 0.98×105 Pa and p = 2.2×105 Pa, ensuring 
flow rates of Q = 0.086×10-3 m3/s and 0.15×10-3 m3/s, respectively. These changes of the 
operating conditions lead to a significant difference in the magnitude of the average power 
density, ε, which is very important for the rate of drop breakage. The power dissipation rate 
can be estimated from the expression ε = pQ/VDISS [22-23]. For the emulsion, produced at the 
lower pressure (p = 0.98×105 Pa), the value of ε is thus estimated to be almost 4 times lower 
than the one for p = 2.2×105 Pa. The values of the final mean drop diameter, d32, obtained 
after 100 passes are presented in Table 3, along with the respective magnitudes of p and ε, and 
the calculated values of dK. 

As expected, the obtained steady-state mean drop size, d32, is smaller for the emulsion 
prepared at higher pressure (viz., at higher power density of energy dissipation). It is observed 
that after 100 passes through the homogenizer, the initial mean drop size d32

INI ≈ 33 µm 
decreases about 6 times at the higher ε, reaching the value of 5.4 µm, while d32

INI decreases 
down to 9.4 µm (i.e. about 3.4 times) at the lower value of ε. As seen from Table 3, the 
experimentally obtained values of d32 agree relatively well with the predicted mean drop 
diameter, dK - for both emulsions d32/dK ≈ 0.8. 
 
Table 3. Experimentally obtained values of the final mean volume-surface diameter, d32, at 
different values of the power density, ε. The aqueous phase contains 1 wt % Brij 58 and 150 
mM NaCl, the oil phase is SBO; σOW ≈ 7.4 mN/m. The emulsification is performed at two 
different pressures with a processing element GW395-2C. The respective values of dK, 
calculated from eq. 2, are also shown. 

Hydrodynamic 
conditions 

p×105, Pa ε×105, 
J/(kg.s) 

d32
INI, µm d32, µm dK, µm 

0.9807 0.49 9.4 11.2 

2.20 1.92 
≈ 33.3 

5.4 6.4 

  
The experimental dependence of d32 on the number of passes, u, along with the 

calculated values of dK, is presented in Figure 2. It is seen that for the emulsion, prepared at p 
= 2.2×105 Pa (corresponding to ε = 1.92×105 J/(kg.s)), even one pass through the processing 
element is sufficient to reduce the value of d32 by more than 2.5 times, from 34 down to 13.3 
µm. During the next two passes, further decrease of d32 from 13.3 µm to 10.7 µm is observed, 
followed by a gradual decrease down to 7.5 µm between passes 3 and 15. Finally, a very slow 
decrease down to 5.4 µm is observed during the last 85 passes.  
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 The dependence of d32 on the number of passes for the SBO-emulsion, produced at 
lower pressure (p = 0.98×105 Pa and ε = 0.49×105 J/(kg.s)), was described in section 3.1. 
Most importantly, no such rapid reduction of the mean drop size is observed after the first 
pass, at ε = 0.49×105 J/(kg.s) - d32 decreases only by 4 µm, from 33 down to 29 µm, after the 
first pass. These experimental observations imply that the value of ε is of great importance for 
the rate constant of drop breakage. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Experimentally obtained dependence of the mean volume-surface diameter, d32, on 
the number of passes, u, and theoretically calculated dK from eq. 2 for two SBO-in-water 
emulsions, prepared at different driving pressures. The aqueous phase contains 1 wt % Brij 58 
and 150 mM NaCl. The emulsification is performed with a processing element GW395-2C. 
 

3.3. Initial mean drop diameter, d32
INI, as a factor affecting the rate of drop 

breakage. 
 In this section we describe experimental results, obtained with two SBO-in-water 
emulsions, which have different initial drop size distributions. One of the studied premixes 
was produced with membrane SPG10.7 and had an initial mean drop size of 34 µm. The other 
premix was prepared with membrane SPG3.2 and the respective mean drop size was 3 times 
smaller, d32

INI = 11.1 µm. These initial emulsions were passed 100 times through the 
homogenizer at equivalent hydrodynamic conditions, p = 2.2×105 Pa and ε = 1.92×105 J/(kg.s) 
(processing element GW395-2C and VDISS = 1.72×10-7 m3). At the end of emulsification, after 
100th pass, d32(u=100) was 5.4 µm for the emulsion with d32

INI = 34 µm, whereas d32(u=100) 
was 7.8 µm for the emulsion with d32

INI = 11.1 µm. The experimental values of d32
INI and d32, 

as well as the predicted drop diameter, dK, are shown in Table 4. The theoretically estimated 
value, dK, is one and the same for both emulsions, because the hydrodynamic conditions, the 
interfacial tension, and the mass density of the aqueous phase are identical in this series of 
experiments. However, as seen from the second column in Table 4, the final experimental 
values of d32 differ by about 30 % for these emulsions (despite the equivalent conditions 
during emulsification), which is beyond the experimental error. The latter result is somewhat 
surprising, but can be explained by comparing the volume-weighted histograms of the initial 
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emulsions (before the 1st pass, see Figures 3A and 3B), and of the final emulsions (after the 
100th pass, Figures 3C and 3D). As one can see from Figure 3C, a relatively large fraction of 
very small drops, with size below Kolmogorov’s diameter, dK = 6.35 µm, is formed when the 
initial emulsion contains large drops. These small drops are called in the literature “satellite 
drops” [15] and they form in the breakage process of the large drops. The fraction of these 
satellite drops is much smaller in the other emulsion, which contains initially only drops with 
diameter comparable to Kolmogorov size (see Figures 3B and 3D). That is why, the final 
value of d32 for this emulsion is larger, although the initial mean drop size was smaller.  

Besides, the results shown in Table 4 show that there is no unique constant of 
proportionality between the theoretically estimated dK and the experimental, steady-state 
values of d32 – the ratio of these two diameters obviously depends on the initial drop size 
distribution, before starting the turbulent emulsification. 
 
Table 4. Experimental values of the initial, d32

INI, and final, d32(u=100) mean volume-surface 
diameters. The aqueous phase contains 1 wt % Brij 58 and 150 mM NaCl, the oil phase is 
SBO; σOW ≈ 7.4 mN/m. The emulsification is performed at p ≈ 2.2×105 Pa (ε = 1.92×105 
J/kg.s) with a processing element GW395-2C. The respective value of dK, calculated from eq 
2, is also given. 

d32
INI, µm d32, µm dK, µm 

34.0 5.4 

11.1 7.8 
6.35 
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Figure 3. Initial (u = 0) and steady-state (u = 100) drop size distribution histograms, by 
volume, for two SBO-in-water emulsions with different initial drop diameters: (A) d32

INI = 34 
µm and (B) d32

INI = 11.1 µm. The aqueous phase contains 1 wt % Brij 58 and 150 mM NaCl.  
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4. Kinetic scheme for the process of drop breakage. 
 

In this section we present the model used for interpretation of the experimental data 
and for determination of the breakage rate constants. The main assumptions in the model are: 
(1) The drop-drop coalescence is negligible; (2) The drop breakage process is considered as 
an irreversible reaction of first order; (3) The drops in the emulsion are classified in a number 
of discrete intervals; all drops falling in a given interval are considered as having the same 
diameter, which corresponds to the average diameter in the interval; (4) The average drop 
diameter for a given interval is chosen in such a way, that the ratio of the drop volumes for 
two consecutive intervals is equal to two; (5) Differential equations are constructed for the 
evolution of the number concentration of the drops, falling in a given interval, under the 
assumption that the drop breakage occurs only in the processing element, which can be 
considered as a reactor of ideal displacement. The equations corresponding to these 
assumptions are specified in sections 4.1-4.3.  
 
 4.1. System under consideration 

 
We consider a hypothetical system, which consists of drops having discrete set of 

volumes (diameters). The volume of the smallest drops in the system is denoted as v0 and their 
diameter is d0. The volumes of the larger drops in the system are 2v0, 4v0, 8v0, .., 2Nv0, 
respectively, where 2Nv0 is the volume of the largest drops in the emulsion. Therefore, the 

diameters of all drops in the system are d0, 3
02d , 3 2

02 d , …, 3
02N d . For simplification of 

the presentation we will denote the diameters as d0, d1, d2,... dN, where 3
02S

Sd d=  and s is an 

integer number between 0 and N.  
In the hypothetical system under consideration we have three qualitatively different 

types of drops. The largest drops in the system have a diameter dN. These drops could break 
only and cannot be formed during emulsification (there are no larger drops to break and the 
drop-drop coalescence is suppressed). The drops having diameter larger than dK (the 
Kolmogorov’s diameter) and smaller than dN can break and, simultaneously, can be formed as 
a product of breaking of larger drops. The third type of drops, which have a diameter smaller 
or equal to dK could only be formed as a product of breakage of larger drops. The diameter of 
the drops dividing the third and second types of drop is assumed to be equal to the 
Kolmogorov’s diameter, dK, as estimated from eq 2. The comparison of the respective kinetic 
scheme with the experimental results (section 5) shows that these assumptions reflect the 
main experimental observations and allow us to (i) determine the rate constants of drop 
breakage, and (ii) gain information about the size distribution of daughter drops, obtained as a 
result of breakage of one larger drop. 
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4.2. Products of the drop breakage process 
  
We assume that the breakage of drops having a diameter dS ( k s N< ≤ ) leads to 

formation of several daughter drops with diameters d0, d1, .... dS-2, and dS-1, respectively. The 
fraction of the volume of the “mother” drop with diameter dS, which is transformed into a 
drop with diameter dm, where 0 1m s≤ ≤ − , is denoted as ps,m. Hence, the value of 2s-mps,m 
gives the average number of drops with diameter dm, which are formed as a result of breakage 
of one drop with diameter dS. The mass balance is satisfied, by imposing the condition that 
the drop with diameter dS is transformed into smaller daughter drops, which have the same 
volume as the original drop. This mass balance can be expressed by the following equation: 

 
1

,
0

1
q

S q
q

p
−

=
=∑  for every k s N< ≤       (3) 

 
where k is the index of the Kolmogorov’s drops, which could not break and N is the number 
of the largest drops in the system.   

 
4.3. Set of kinetic equations describing drop-size evolution 
 
To formulate the kinetic equations, describing the drop size evolution, we assume that 

the drop breakage occurs only in the processing element, see Figure 4. The processing 
element is considered as a plug-flow reactor with ideal displacement, which is the simplest 
model for tubular-type of reactors [24]. This model implies that there is no longitudinal 
mixing of the fluid elements, as they move along the processing head of the homogenizer, and 
that all fluid elements travel for the same period of time from the inlet to the outlet of the 
equipment [24]. When the composition of the emulsion entering the processing element does 
not change with time (in a given pass), a steady-state drop-size distribution is established 
inside the reactor, and the function characterizing the evolution of drops with given size 
depends on the distance from the beginning of the reaction zone only [24], see Figure 4. 

 

Figure 4. Schematic presentation of the processing element as a plug-flow reactor.   
 
 

Processing element
inlet outlet 

0 x L1
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To formulate the differential equation desrcibing the evolution of the number 
concentration, nS, of drops with size dS, we assume that: the breakage process is an 
irreversible reaction of first order, a steady-state is reached immediately after starting the flow 
in a given pass, and 2s-mps,m drops with size dm are formed after breaking a drop with size dS.  

The differential equation describing the variation, along the processing element, of the 
concentration of the largest drops with diameter dN is: 

 

( ) ( )1
N

N N

dn x
V k n x

dx
= −     (4) 

 
where V1 is the linear velocity of the fluid along the processing element, x is the distance from 
the beginning of the element, kN is the breakage rate constant and nN(x) is the concentration of 
the largest drops in the emulsion.  

The differential equation, which describes the number concentration, nS, of drops with 
diameter dS, which could simultaneously break and form from larger drops during 
emulsification, is:  

 

( ) ( ) ( )1 ,
1

2
N

S q S
S S q S q q

q S

dn x
V k n x p k n x for K s N

dx
−

= +

= − + < ≤∑   (5) 

  
where the first term in the right-hand side gives the rate of drop breakage, whereas the second 
term describes the rate of formation of these drops, as a result of breakage of larger drops. The 
parameter 2q-Spq,S gives the average number of drops with diameter dS, which are formed from 
the breakage of drops with diameter dq, where q > s.  
 As mentioned above, the drops with diameter smaller or equal to dK could be formed 
only as a result of breakage of larger drops, which means that the first term in eq 5 is zero for 
these drops, and eq 5 is simplified to:  
 

( ) ( )1 ,
1

2 0
N

S q S
q S q q

q K

dn x
V p k n x for s K

dx
−

= +

= ≤ ≤∑   (6) 

 
where the index K indicates the Kolmogorov size.  

The set of equations 4-6 was solved by using the initial conditions: 
 

( ) 00 0S Sn x n for s N= = ≤ ≤     (7) 

 

where 0
Sn  is the number concentration of the drops with diameter dS at the inlet of the 

equipment. Note that the values of 0
Sn  are determined in our experiments by optical 
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microscopy - these are given by the drop-size distribution of the emulsion, poured into the 
inlet of the equipment for a given pass. 

The solution of eqs 4-6 is: 
 

( ) 0

1

exp N
N N

k xn x n
V

 
= − 

 
      (8) 

  

( ) ( ),
11 1 1

1exp 2 exp 1
N

q SS S
S q S q q

q S

k x k xn x const p k n x dx for K s N
V V V

−

= +

    
= − + < ≤ −         

∑ ∫   (9) 

 

 ( ) ( )0
,

11 0

1 2 0
xN

q S
S S q S q q

q K

n x n p k n d for s K
V

−

= +

= + ≤ ≤∑ ∫ ξ ξ    (10) 

 
Note that the integrals for nS(x) in eqs 9 and 10 can be evaluated analytically, after the 
analytical expressions for the concentrations of the larger drops nq(x) are obtained by solving 
the respective equations for drops with size dq (q > s). 

Experimentally we measure the drop number concentration at the outlet of the 
equipment, see Figure 3.2. This concentration is given by eqs 8-10 with x=L1. After 
substituting x=L1 and taking into account that L1/V1 is the average residence time of the drops 
in the processing element, θ, we obtain expressions for the concentration of the drops with 
different sizes at the outlet of the equipment after the first pass through the homogenizer. For 
the largest drops the result reads: 

 

( ) ( )0 01
1

1

exp expN
N N N N

k Ln x L n n k
V

 
= = − = − 

 
θ    (11) 

 
The solution for the number concentration of the second fraction of drops, nN-1, with a 

diameter dN-1, is: 
 

( ) ( ) ( )
0 0

, 1 , 10
1 1 1 1

1 1

2 2
exp expN N N N N N N N

N N N N
N N N N

p k n p k n
n x L n k k

k k k k
− −

− − −
− −

 
= = − − + −  − − 

θ θ        (12) 

 
where kN-1 and kN are the breakage rate constants for drops having diameters dN-1 and dN, 

respectively; 0
1Nn −  and 0

Nn  are their initial concentrations; 2pN,N-1 gives the average number of 

drops with diameter dN-1 which are formed after breakage of a drop with diameter dN; and θ is 
the residence time of the drops in the processing element. It is clearly seen from eq 12 that the 
concentration of drops with diameter dN-1, at the outlet of the processing element, depends not 
only of their rate of breakage, but also on the rate of their formation from the largest drops 
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(see the second term in the right-hand side of eq 12). In a similar way, one can derive 
expressions for the number concentrations of the smaller drops in the emulsion.   

To describe the evolution of the number concentration of the various drops, after 
different number of passes through the homogenizer, we solve eqs 4-6 by using as initial 
conditions the concentrations, which are obtained as solutions of the same equations for the 
previous pass. For example, for the second pass through the homogenizer we solve eq 4 for 
the largest drops, by using eq 11 instead of eq 7 as an initial condition. In this way we are able 
to obtain analytical expressions for the number concentrations of the drops, as functions of the 
number of passes through the homogenizer, u. For the largest drops, the respective equation 
reads: 

 

   ( ) ( )0 expN N Nn u n uk= − θ      (13) 
 

where u is the number of passes of the emulsion through the homogenizer and 0
Nn  is the 

number concentration of the drops in the initial premix, before the first pass. Note that uθ 
gives the total time of emulsion passage through the processing element, that is the total 
emulsification time. 

The respective equation for the drops with diameter dN-1 is   
 

( ) ( ) ( )
0 0

, 1 , 10
1 1 1

1 1

2 2
exp expN N N N N N N N

N N N N
N N N N

p k n p k n
n u n uk uk

k k k k
− −

− − −
− −

 
= − − + −  − − 

θ θ       (14) 

 
In a similar way we derived equations, which describe the evolution of the number 

concentration of all drops in the emulsion. The equations for the smaller drops are rather long 
and will not be represented here. 

 
4.4. Particular cases.  
 
The constructed set consists of N+1 equations, describing the evolution of the number 

concentration of drops with diameters between d0 and dN, plus N-K equations expressing the 
mass balance of the drops, which are able to break, see eq 3. On the other hand, we have N-K 
unknown breakage rate constants for the drops larger than dK, as well as (N-K)(N+K+1)/2 
unknown constants of type ps,m. Since the total number of unknown constants is larger than 
the total number of equations, we should make some assumptions for the constants ps,m to 
solve the set of equations. In this subsection we consider two simple illustrative cases. The 
comparison of these simple models with the experimental data shows that neither of them is 
able to describe adequately all our experimental results. That is why, another more complex 
model is considered in section 5.2C.   
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4.4.A. Binary breakage. The simplest case for drop breakage is the so-called “binary 
breakage” [12-13,25]. In our terms, this mode of drop breakage implies that only drops with 
equal diameters, dS-1, are formed after breakage of a drop with diameter dS ( K s N< ≤ ). This 
process of drop breakage is schematically presented in Figure 5A. The assumed mode of drop 
breakage implies that pS,S-1 = 1 and all other values pS,m = 0 for m ≤ s-2. In this version of the 
model, we could easily determine the breakage rate constants from the experimental data for 
all drops with sizes larger than dK. Note, however, that the formation of drops with diameter 
smaller than dK is impossible in the binary breakage model. The latter restriction is in obvious 
contradiction with the experimental results, because a significant fraction of drops with 
diameter smaller than dK was observed in the final emulsions, even when the premix did not 
contain any drops with such small diameters, see Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. (A) Schematic presentation of the process of binary drop breakage. One drop with 
diameter dS breaks into two smaller drops with equal diameters dS-1, with a breakage rate 
constant, kS. (B) Schematic presentation of the process of equal number probability breakage. 
One drop with diameter dS breaks into a series of smaller drops with diameters dS-1, dS-2, .., d1 
(one drop for each size) and two drops with diameter d0 (to satisfy the mass balance) 

   
 
4.4.B. Equal number probability for drop formation. Another hypothetical case, which 

leads to relatively simple closed set of equations, can be designed if one assumes that the 
breakage of a drop with diameter dS results in the formation of a series of single drops with 
diameters dS-1, dS-2 ..d1, plus two drops with diameter d0 (to satisfy the mass balance for the 
breaking drop, eq 3), see Figure 5B. In this case, the probability for formation of smaller 
drops from a larger drop with diameter dS is expressed by the equations: 

 

+dS dS-1 dS-1kS 

+
dS dS-1 dS-2

d0

+ +
kS 

(A) 

(B) 
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,
1 1 1

2S q S qp for q s−= ≤ ≤ −          and ,0 1

1
2S Sp −=     (15) 

 
In the framework of this model, we should determine only the breakage rate constants 

from the experimental data, because the values of pS,q are pre-defined by eqs 15. Note that this 
model allows the formation of drops with diameter smaller than dK. As shown in section 5.2, 
our experimental data are better described by this model (though not perfectly well), as 
compared to the model of binary breakage.  

 
4.4.C. Numerical simulations. To check how the values of pS,m affect the dependence 

of the number concentration of drops with diameter dm on the number of passes, nm(u), we 
performed numerical calculations of nm(u) for a hypothetical system, which consists of drops 
with 10 different diameters, ranging from d0 to d9. The drop diameter corresponding to dK was 
chosen to coincide with d5. In other words, drops with diameters between d6 and d9 could 
break into smaller drops, whereas the drops with diameter between d0 and d5 could only be 
formed as a result of breakage of larger drops. Additionally, we assume that only drops with 

diameter d9 and concentration 0
9n  are present in the initial emulsion (i.e. the initial emulsion is 

monodisperse). For this illustrative simulation we take the following values of the breakage 
rate constants: k9 = 100 s-1; k8 = 30 s-1; k7 = 10 s-1; k6 = 3 s-1 and θ = 1 ms. These values are 
close to the ones determined experimentally for some of the studied emulsions - see section 5 
below.  

From eq 13 one can see that the dependence n9(u) for the largest drops does not 
depend on the values of pS,m, because the largest drops can only break. The situation for the 
smaller drops, which could both break and form from larger drops, is rather different. The 
comparison of the two theoretical curves, calculated from eq 14 for the two simplest cases 
described in sections 4.4A and 4.4B, is presented in Figure 6. It is seen that the maximal value 
of nN-1 changes around 2 times while changing pN,N-1 from 1 (model of binary breakage) to 0.5 
(equal number probability). Furthermore, the increase of nN-1 before the maximum in the 
curve is much steeper in the case of binary breakage, as compared to the case of equal number 
probability, see Figure 6.  

The detailed mechanism of drop breakage and the distribution of daughter drops 
become even more important for the concentration evolution of the smaller drops. As an 
example, in Figure 7 we show theoretically calculated curves nK(u) for the drops having 
Kolmogorov’s diameter (in our hypothetical example, dK = d5 = dN-4). 

In conclusion, the actual value of the probability for formation of smaller drops, as a 
result of breakage of the larger drops, affects significantly the dependence nm(u) for all drops 
with diameter smaller than dN.  
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Figure 6. Normalised number concentration, nN-1/nN

0, of the second fraction of drops with 
diameter dN-1, as a function of the number of passes, u, calculated by using eq 12 under the 
assumption of binary breakage (blue curve) or equal number probability for drop formation 
(red curve). The other parameters used in these calculations are kN = 100 s-1, kN-1 = 30 s-1; θ = 
1 ms and 0

1Nn −  = 0.   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 7. Normalised number concentration, nN-5/nN

0, for the drops with Kolmogorov’s 
diameter, as a function of the number of passes, u, calculated under the assumption of binary 
breakage (blue curve) or equal number probability for drop formation (red curve). The other 
parameters used in these calculations are kN = 100 s-1, kN-1 = 30 s-1; kN-2 = 10 s-1; kN-3 = 3 s-1; θ 
= 1 ms, and 0

1Nn −  = 0
2Nn −  = 0
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4Nn −  =  0.   
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5. Interpretation of the experimental data and determination of the breakage rate 
constants 
 

5.1. Data processing 
For determination of the breakage rate constants we need to know how the number 

concentration of the drops with given size changes after passing the emulsion through the 
homogenizer. To obtain the dependence nS(u) we classified the experimental data for the drop 
size distribution inside discrete intervals. The average diameters in these intervals correspond 

to d0, d1, d2,.dS.. dN, where 3
02S

Sd d=  and d0 is chosen in such a way that the Kolmogorov 

size corresponds to the average diameter of some of the intervals. The boundaries of the 
interval with average diameter di are di-xi and di + xi, whereas the boundaries of the interval 
with average diameter di+1 are di+1-xi+1 and di+1+xi+1, respectively (xi ≠ xi+1). The ratio of the 
widths of the intervals around di and di+1, viz. the ratio xi/xi+1, was chosen to be equal to the 
ratio di/di+1 [26]. The above requirements lead to the following boundaries of the intervals:  
 

1 1

1 1

3
0

2
2

2

i i i i

i i

i i

i
i

d d x x
x d
x d

d d

+ +

+ +

− = +

=

=

  ⇒  0.885 1.1150i i id d d< <  (16) 

 
Following the described procedure, we classified the measured drop diameters in different 
intervals and determined the number of drops falling in a given interval. To obtain the number 
concentration, nS, of the drops falling in the interval around dS, we used the following 
equation: 
 

3

0

6S S S
S N

EM OIL
i i

i

N N Nn
V V N d

=

Φ Φ
= = =

∑π
     (17) 

 
where Ni is the number of measured drops with diameter di, Φ is the oil volume fraction, VEM 
is the emulsion volume, and VOIL is the total volume of emulsified oil.  
 Typical histograms for the initial emulsion (premix), as well as for the same emulsion 
after 1, 20 and 100 passes through the homogenizer, are presented in Figure 8. It is seen that 
the number concentration of the smallest drops increases steeply after the first pass, whereas 
the number concentration of the largest drops decreases, due to their breakup. From such 
histograms we can construct the dependence nS(u), which is shown in Figure 9 below.  
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Figure 8. Number concentration of drops, as a function of drop diameter, for silicone oil-in-
water emulsion, ηD = 50 mPa.s, stabilized by 1 wt % Brij 58 (+150 mM NaCl) for: (A) 
premix; (B) after 1 pass; (C) after 2 passes; (D) after 100 passes through the homogenizer.  
 
 

5.2. Determination of breakage rate constants. 
The kinetic scheme, described in section 4, shows that the evolution of the number 

concentration of the largest drops, nN, does not depend on the breakage of the other drops, see 
eq 13. In other words we can determine kN without knowing how the smaller drops break, 
whereas for determination of the breakage rate constant of the next fraction of drops, kN-1, we 
need to know pN,N-1 (viz. the probability for formation of drops with diameter dN-1 in the 
process of breakage of drops with diameter dN). Note that the value of pN,N-1 is not known in 
advance. The problem for determination of the rate constant for even smaller drops, kN-2, is 
much more complex, because these drops could form in the process of breakage of the larger 
drops with diameters dN and dN-1. Thus, to describe the dependence of nN-2(u) we need the 
values of kN, kN-1, kN-2, pN,N-1, pN,N-2, pN-1,N-2.  

To illustrate the procedure for determination of the breakage constants from the 
experimental data, we first demonstrate the data analysis by the two simple models, described 
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in section 4.4 above (models of binary breakage and equal number probability). In these 
models, the values of pS,m are fixed and from the best fit of the experimental data we can 
determine the values of the breakage rate constants. Note that the values for the drops larger 
than dS (viz. kS+1, kS+2, .. kN), which are determined from the best fits to the number 
concentrations of the respective drops (i.e. with diameters dS+1, dS+2, .. dN) are introduced in 
the kinetic equation for nS, so that the only adjustable parameter in this equation is kS, which 
is used to fit the experimental data for nS(u). 
  

5.2.A. Binary breakage. We were able to describe only the experimental data for nN(u) 
(largest drops in the premix) and for nN-1(u) (second fraction of drops) by this model. The 
experimental data for nN(u) and nN-1(u) for silicone oil-in-water emulsion, stabilized by 1 wt 
% Brij 58 (+150 mM NaCl), along with the best fit calculated by using eqs 13 and 14, are 
presented in Figures 9A and 9B, respectively. It is seen that the theoretical fits describe well 
the experimental data for these two fractions of drops. The values of kN and kN-1 obtained 
from the best fits are 293 s-1 and 144 s-1, respectively.  

Note that the initial concentration of the largest drops, 0
Nn , is around 10 times lower 

than 0
1Nn − , see Figure 8A. For this reason, the contribution of the flux from the largest drops to 

1Nn −  is relatively small, in comparison with the initial concentration of the drops with 

diameter dN-1, see eq 14. The situation is different for the smaller drops with diameter dN-2, see 

Figure 9C. Their initial concentration is around 3 times lower than 0
1Nn − , and the contribution 

of the breaking larger drops, with diameters dN-1 and dN, is very significant. Thus, from the 
dependence of nN-2 we could obtain information not only for the breakage constant of the 
drops with diameter dN-2, but also for the breakage process of the larger drops. The numerical 
checks showed that it is impossible to describe the experimental data for nN-2(u) in the 
framework of the binary breakage model, see Figure 9C. One can see from this figure that the 
theoretical curve nN-2(u) increases much faster than the experimental points in the first 10 
passes, which means that the binary breakage model grossly overestimates the flux from the 
larger drops to nN-2.  

Furthermore, we could determine the breakage rate constant for drops with diameter 
dN-2 by using only the passes, in which these drops have remained the largest ones in the 
emulsion. For this particular fraction of drops this happens after the 25th passes of the initial 
emulsion through the homogenizer, see Figures 9A and 9B. Note that the drops with 
diameters dN and dN-1 disappeared completely from the emulsion after 25 passes, due to their 
faster breakage – hence, the drops with size dN-2 cannot be formed from larger drops, they can 
only break in the processing element. Thus we analyzed the experimental data for nN-2(u), 
starting from the 25th pass, by using eq 13 and obtained a breakage rate constant of kN-2 = 24 
s-1. Our attempt to fit the whole curve for nN-2(u) with this value of kN-2 were unsuccessful, see 
the blue curve in Figure 9 C. All experimental points fall below the theoretical curve, which 
means that the contribution of the drops, formed from breakage of larger drops, is 
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overestimated. In conclusion, the comparison between the experimental data and the 
theoretical curves clearly shows that the breakage of the largest drops in the studied emulsions 
does not occur through binary breakage, see Figure 9C.  

If we try to describe the evolution of even smaller drops in the emulsion under 
consideration, the discrepancy between the theoretical predictions and the experimental data 
becomes more pronounced. Similar discrepancy between the experimental data and the 
theoretical predictions of the binary breakage model was established for all studied emulsions. 
Thus we can conclude that the binary breakage is not operative in any of the studied systems.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Number concentration of the drops, as a function of number of passes, along with 
the best fit constructed under the assumption for binary breakage for: (A) Largest drops in the 
initial emulsion having diameters between 39.6 and 49.9 µm; (B) Second fraction of drops 
with diameters between 31.5 and 39.6 µm; and (C) Third fraction of drops with diameters 
between 25 and 31.5 µm for silicone oil-in-water emulsions, stabilized by 1 wt % Brij 58 
(+150 mM NaCl) at Φ = 0.01. 
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5.2.B. Equal number probability for formation of smaller drops. In this subsection we 
present a comparison between the experimental results for nS(u), obtained with silicone oil-in-
water emulsions with ηD = 50 mPa.s, and theoretical dependencies, calculated under the 
assumption that the values of pS,m are presented by eq 15. In this theoretical model, the 
breakage of a drop with size dS leads to formation of a series of single drops with diameters 
dS-1, dS-2, ..., d1, and two drops of diameter d0, see Figure 5B. Thus we have explicit 
expressions for the dependence nS(u) with one unknown parameter, kS. The values of kS+q are 
known from the best fit to the data for the respective larger drops, nS+q(u).  

The value of kN for the largest drops in the emulsion for this particular emulsion is 293 
s-1, see Figure 9A. For the second fraction of drops with diameter dN-1 (between 31.5 and 39.6 
µm) we obtain kN-1 = 128 s-1, which is close to the value 144 s-1 obtained in the binary 
breakage model. The relatively low effect of pN,N-1 on the fitted value of kN-1 is explained by 
the low initial concentration of the largest drops in the particular premix, which leads to a 
relatively low contribution of the largest drops in the function nN-1(u).  

As explained in the previous subsection, we found that the evolution of the third 
fraction of drops with diameter dN-2 cannot be described under the assumption for binary 
breakage, see Figure 9C. On the other hand, the model of equal number probability, pN,N-1 = 
pN-1,N-2 = 0.5 and pN,N-2 = 0.25, describes relatively well the experimental dependence nN-2(u). 
As seen from Figure 10A, the calculated curve follows the experimental data, and the value 
kN-2 = 24 s-1, determined from the best fit of the whole curve, is in a good agreement with the 
constant obtained from the fit of the experimental data after the 25th pass only (when these 
drops are the largest ones in the emulsion).  

Relatively good agreement between the experimental data and the theoretically 
calculated drop concentrations is observed for the drops with diameters dN-3 and dN-4, as well 
(see Figures 10B and 10C). However, the comparison between the experimental data and the 
theoretical dependence nK(u) for the drops with the Kolmogorov size, equivalent to dN-5 in 
this system, shows that the flux from the larger drops to nK(u) is overestimated, see Figure 
10D. On the other hand, the flux from the breaking large drops to the drops with diameter 
smaller than the Kolmogorov size is underestimated, see Figure 10E. 

In conclusion, the model of equal number probability describes better the experimental 
data than the model of binary breakage, but it still cannot predict properly the formation of 
small drops with d ≤ dK.  
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Figure 10. Number concentration of drops, as a function of the number of passes, along with 
the best fits constructed under the assumption for equal number probability for formation of 
smaller drops: (A) Third fraction of drops, dN-2, with diameters between 25 and 31.4 µm; (B) 
Drops with diameters, dN-3, between 19.8 and 25 µm; (C) Drops with diameters, dN-4, between 
15.7 and 19.8 µm; (D) Kolmogorov’s drops with diameter, dK, (E) Drops with diameter below 
the Kolmogorov’s size. The experiments are performed with silicone oil-in-water emulsion, 
stabilized by 1 wt % Brij 58 (+150 mM NaCl) at Φ = 0.01. 
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5.2.C. Non-equal probability for formation of smaller drops. As a next step in the data 
interpretation, we try to determine the value of pS,q under the assumption that the values of 
pS,S-q are the same for arbitrary s. In other words we suppose that pS,S-q does not depend on the 
diameter of the breaking drops. This assumption corresponds to so-called “self-similarity” 
mode of drop breakage [12-13].  

The value of pN,N-1 for all studied systems cannot be determined with sufficient 
accuracy from the experimental data for nN-1(u), because no increase of the concentration nN-1 
with u is observed experimentally, due to the low initial concentration of the largest drops in 

the premix, 0 0
1 ~ 0.1N Nn n − , see Figure 8A. On the other hand, the ratio 0 0

1 2 ~ 3N Nn n− − , which 

means that the number concentration of drops with diameter dN-2, generated from larger drops 

with diameter dN-1, is comparable or higher than their initial concentration, 0
2Nn − . Thus, the 

value of pN-1,N-2 will affect significantly the experimental function nN-2(u). For that reason we 
fitted the experimentally determined dependence of nN-2 (u) by using as adjustable parameters 
pN,N-1 = pN-1,N-2 and pN,N-2, whereas the values of kN, kN-1 and kN-2 were taken from the best fits, 
describing the evolution of a given fraction of drops, when the latter are the largest ones in the 
emulsion. For silicone oil-in-water emulsion, the values of kN, kN-1 and kN-2 were 293 s-1, 129 
s-1 and 24 s-1, respectively. In this way, we were able to determine pN-1,N-2 = pN,N-1 = 0.45 ± 
0.05. However, the value of pN,N-2 cannot be obtained with sufficient accuracy, due to the low 
initial concentration of the largest drops.  

If we use the value pN,N-1 = 0.45 ± 0.1 and fit the entire set of data for nN-1(u), the value 
of kN-1 changes from 129 s-1 to 123 s-1, which is in the frame of our accuracy. Thus we can 
conclude that kN-1 = 125 ± 20 s-1 for the emulsion under consideration. 

 The value of kN-2 also slightly depends on the values of pS,N-2. It varies between 20 
and 30 s-1 when pN-1,N-2 varies between 0.45 and 0.6 (this is the range of values giving 
acceptable fit to the experimental data for nN-2(u), see Figure 9C). Therefore, kN-2 = 25 ± 5 s-1 
was accepted for the further consideration. It should be noted that the values of kN-1, kN-2 
obtained from the best fits to the entire curves for nN-1 (u) and nN-2 (u), using pN-1,N-2 = pN,N-1 = 
0.45 ± 0.05, agree with those obtained from the last part of the curves, when the respective 
drops are the largest ones in the emulsion.  

To fit the experimental curve for nN-3(u), we fixed the values pN,N-1= pN-1,N-2 = pN-2,N-3 
= 0.45, and used the values of kN, kN-1 and kN-2 determined from the fits for the larger drops. 
Thus we have three adjustable parameters to fit the data for nN-3(u): pN-1,N-3 = pN,N-2, pN,N-3, 
and kN-3. The value of pN,N-3 affects very slightly the theoretical curve nN-3(u), so that this 
value cannot be determined accurately from the fit. Thus from the best fit we were able to 
determine the values pN-1,N-3 = pN,N-2 = 0.325 ± 0.025 and kN-3 = 8 ± 1.5 s-1.  

Following similar procedure, we were able to determine from the fits to the data for 
the smaller drops kN-4 = 4 ± 1 s-1 and kN-5 = 1.5 ± 1s-1. Note that the value of kN-5 is very close 
to zero, which is to be expected because the Kolmogorov size for this system is 13.6 µm, 
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which falls in the interval of the drops under consideration. For the probabilities of daughter 
drop formation we obtained pS,S-3 = 0.094 ± 0.002 and pS,S-4 ≈ 0.02 ± 0.01.  

In conclusion, the values of the breakage rate constants are determined with an 
accuracy of about 20 %. The values of pS,q decrease with the decrease of q, see Figure 11. It is 
seen that around 45 % of the volume of a breaking drop with diameter dS is transformed into 
drops with diameter dS-1, whereas 32 % is transformed into drops with size dS-2. The 
remaining 23 % of the drop volume transform into even smaller drops. We have no sufficient 
accuracy to determine precisely the values of pS,S-4 and the subsequent constants 
characterizing the generation of smaller drops. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Average volume probability for formation of drops with size dS after breaking a 
drop with diameter dM, as a function of the volume ratio for the breaking and forming drops, 
dM

3/dS
3. The points are determined from the best fits to the experimental data for silicone oil-

in-water emulsions, stabilized by 1 wt % Brij 58.  
 
 

5.3. Breakage rate constant as a function of drop diameter.  

In this subsection we present the dependence of kS on dS, as determined from the 
experimental data under the assumption for self-similarity of drop breakage (pS,S-q are 
considered independent of s). The procedure for determination of kS is described in the 
previous subsection.    

 
(A) Effect of the oil viscosity on kBR. To check how the oil type and viscosity affect 

the dependence kBR(d) we performed experiments with oil-in-water emulsions stabilized by 1 
wt % Brij 58 (+150 mM NaCl) by using as oil phase: silicone oil with viscosity 50 mPa.s; 
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The emulsification conditions are described in section 3.1. The applied pressure is around 105 
Pa, and the residence time is around 2 ms. 

The dependencies kBR(d) for the studied oils are presented in Figure 12. For the 
emulsions prepared with silicone oil and SBO, both with ηD = 50 mPa.s, kBR decreases from 
120 down to 1 s-1 while decreasing the drop diameter from 35 to 15 µm. For these two oils, 
the values of kBR are almost the same in the frame of our accuracy for d between 35 and 15 
µm. For both systems, the breakage rate constant becomes virtually 0 when d reaches the 
Kolmogorov diameter, estimated by eq 2. On the other hand, the value of kBR for drops with 
diameter 45 µm, for SBO-in-water emulsion, is larger than 500 s-1, whereas the value for 
silicone drops with the same diameter is around 300 s-1, which indicates that the interfacial 
tension is more important for the larger drops (the interfacial tension for SBO is smaller than 
that for silicone oil, 7.4 vs 10.9 mN/m). It seems that changes in the interfacial tension do not 
affect strongly kBR for drops with diameter close to dK.  

On the other hand, when the viscosity of the oil phase increases from 50 to 100 mPa.s 
(cf. the red and pink points in Figure 12), the value of kS decreases from 300 to 100 s-1 for 
drops with average diameter of 45 µm, and from 120 to 18 s-1 for drops with average diameter 
of 35 µm. Note that the interfacial tension for these two systems is the same (≈ 10.5 mN/m). 
Hence, the lower values of kBR are due to the higher oil viscosity.  

In conclusion, the oil viscosity significantly affects the breakage rate constant for 
systems, in which the density of energy dissipation and the interfacial tension are similar. The 
interfacial tension slightly affects kBR for oils with similar viscosity (for drops which are not 
much larger than dK).   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. Breakage rate constants, as functions of drop diameter, for emulsions stabilized by 
1 wt % Brij 58 (+150 mM NaCl) for silicone oil with ηD = 50 mPa.s (red squares); silicone oil 
with ηD = 100 mPa.s (pink squares); and soybean oil with ηD = 50 mPa.s (green triangles). 
The emulsification conditions are presented in Table 1.  
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(B) Effect of average power density on the dependence of kBR on d 
The effect of hydrodynamic conditions on kBR was studied with SBO-in-water 

emulsions. The mean drop diameter in the initial emulsions (premixes) was the same, but the 
emulsification experiments were performed at two different driving pressures, 1 and 2 atm, in 
the narrow-gap homogenizer. The obtained dependencies kBR(d) are shown in Figure 13A. 
The results show that kBR increases more than 40 times when ε is increased from 0.49×1058 to 
1.92×105 J/kg.s, see Table 1. The plot of the dependence kBR vs. d/dK is presented in Figure 
13B. It is seen from the figure that kBR is around 2 times higher for emulsions prepared at 
higher pressure, for drops with diameter two times larger than dK.  

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

Figure 13. Breakage rate constants as a function of: (A) Drop diameter; and (B) Normalized 
drop diameter, d/dK, for soybean oil-in-water emulsions stabilized by 1 wt % Brij 58 (+150 
mM NaCl) at two different driving pressures, see also Table 1.  
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6. Theoretical models for the dependence of the breakage rate constant on drop 
diameter and their comparison with the experimental results. 

 
Models containing explicit expressions for kBR are proposed in Refs. 1-4,25. In this 

section we briefly describe these models (and some modifications), and compare them with 
our experimental results.   

 
6.1. Model proposed by Tavlarides and Coulaglou [1]. 
 
The model for the rate of drop breakage, proposed by Coulaglou and Tavlaridies [1], 

is based on the assumption that kBR is a product of the fraction of drops (from the total number 
of drops in the emulsion) having energy sufficiently large to induce drop breaking and of the 
reciprocal time required for drop breakage to occur: 
 

( )1 1 expBR
BREAKAGE

Efraction ofk drops breakingbreakage time E
σ

τ
   = = −   

  
  (18) 

 
Here the exponential factor is assumed to be the ratio of the surface energy required for drop 
deformation and the mean kinetic energy of the turbulent eddies. The drop surface energy is 
estimated as: 

 
Eσ ~ πd2σOW      (19) 

 
The mean turbulent kinetic energy of the eddies with size equal to the drop size, d, can be 
found from the theory of turbulence [1]:  

 
3 2~ 6DE d uπρ      (20) 

 

where ρD  is the mass density of the dispersed phase and  2u  is the mean square velocity of 

the eddies. For the inertial subrange, 2u  is given by  
 

2 2 3 2 3~u dε     (21) 

 
The breakage time entering eq 18 is assumed to be equal to the so-called “deformation 

time”, needed for deforming the drop to a sufficiently large aspect ratio, so that Rayleigh type 
of capillary instability could occur. The respective equation for the deformation time depends 
on the Reynolds number in the drops, defined as [27]: 
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Re DR D
DR

D

U d ρ
η

=                             (22) 

 
where UDR is the velocity of the liquid inside the drops, and ηD is the dynamic viscosity of the 
dispersed phase. If ReDR > 1 (drops with viscosity similar or smaller than that of the 
surrounding fluid), the deformation time is estimated by comparing the force acting on the 
drops, due to fluctuations in the dynamic turbulent pressure, and the acceleration of the drop 

subdomains , v~
C

p
tρ

∇ ∂
∂

(see section 127 in Ref. [27]). The respective expression for the 

deformation time reads (cf. with eq 127.6 in Ref. [27]): 
 

2 3

1 3
D

DEF
C

d ρ
τ =

ε ρ
  ReDR > 1  (23) 

 
Combining eqs 18-21, one derives the following equation for the rate constant of drop 

breakage at ReDR >1 [1]: 
 

( )
1 3

1 22 3 2 3 5 3

6expC OW
BR

D D

k d a a
d d

ρ σε
ρ ρ ε

 
= − 

 
  ReDR > 1 (24) 

 
where a1 and a2 are unknown constants of the order of unity. 

On the other hand, if ReDR < 1, which is the case of viscous dispersed phase, the 
deformation time can be estimated by neglecting the acceleration term (quasi-stationary 
approximation) and comparing the pressure fluctuations with the viscous stress in the drops. 
The respective equation reads (cf. with eq 127.7 in Ref. [27]): 

 

2 3 2 3
D

DEF
Cd

η
τ =

ε ρ
;  ReDR < 1  (25) 

 
Note that in this case, the deformation time increases with the viscosity of the 

dispersed phase, ηD, whereas the deformation time does not depend on drop viscosity in eq 
23. Furthermore, eq 25 predicts that the deformation time decreases with drop diameter for 
viscous drops, whereas eq 23 (for non-viscous drops) predicts the opposite trend. 

Combining eqs 18-20 and 25, we obtain the following expression for the breakage 
constant of drops with viscous disperse phase (ReDR < 1): 

 

( )
2 3 2 3

2 3 5 3

6expC OW
BR

D D

dk d
d

ρ ε σ
η ρ ε

 
= − 

 
;  ReDR < 1  (26) 
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One sees from eq 24 that the main parameters, governing the rate of breakage for ReDR 
> 1, are the average power density, ε, which characterises the hydrodynamic conditions 
during emulsification, and the interfacial tension, σOW, which depends on the used surfactant. 
For ReDR < 1, the viscosity of the oil phase, ηD, also affects the rate of drop breakage, see eq 
26.  
 
6.2. Comparison of the experimental data with the model by Coulaglou and Tavlarides 
[1] 
 

We calculated the value of the Reynolds number in the drops by eq 22, and found that 
ReDR < 1 for the drops with d < 40 µm, for all studied emulsions prepared at p = 1 atm. For 
SBO-in-water emulsions, prepared at p = 2 atm, ReDR ≈ 1 for drops with diameter 30 µm. 
This means that the value of ReDR is lower or close to 1, and we should use eq 26, to fit the 
experimental data for all emulsions, in the frame of the model from ref 1. 

To compare the experimental data and the theoretical dependence, we constructed the 
plot ln[kBR×ηD/(ρC d2/3 ε2/3)] versus (dK/d)5/3, which should correspond to a “master” straight 
line, according to eq 26; dK is calculated by eq 2. As seen from Figure 14, the experimental 
points do not fall on a straight line or on a single “master” curve. One can conclude from this 
comparison that the model proposed by Coulaglou and Tavlaridies [1] does not describe 
adequately the experimental data for the dependence of kBR on the drop diameter and on the 
viscosity of the oil phase.   
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6.4. Model proposed by Prince and Blanch [4] 
 
In this model the breakage rate constant is assumed to be proportional to the frequency 

of drop-eddy collisions, multiplied by the collision efficiency [4]:  
 

( )( )BRk eddy drop collision frequency breakage efficiency= −    (27) 

 
The probability for drop-eddy collision is estimated under the assumption that the 

drops and eddies can be considered as molecules in the kinetic theory of gases. Thus the 
collision frequency h(d) between drops of size d and eddies of a size that can break these 
drops (i.e., eddies with size equal or smaller than drop diameter) is presented as [4]: 

 

( ) ( )1 22 2

e

eq e d d e
n

h d S u u n dn= +∫     (28) 

where ( )2

4eq eS d dπ
= +  is the collision cross-section area; de is eddy size; d is drop diameter; 

nd is number concentration of drops with size d; dne is the number concentration of eddies 
with size between de and de+δde; ue is the mean velocity of eddies with size de; and ud is the 
mean drop velocity.  
 To apply eq 28, one needs to know the number concentration of eddies with given 
size, de. This concentration can be determined from the expression, derived by Azbel and 
Athanasios [4, 28]: 
 

( ) 20.1

C

dN k k
dk

=
ρ

     (29) 

 
where N(k) is the number of eddies of wave number k per unit mass of the fluid, and ρC is the 
mass density of the continuos phase.  

The efficiency of drop breakage is experseed by the following equation: 

 

( ) exp
KIN

EE d
E

 
= − 

 
σ      (30) 

 
where Eσ is the drop surface energy given by eq 19, whereas EKIN is the kinetic energy of the 
eddy, expressed as: 
 

EKIN = 0.43ρCπ(2/k)11/3ε2/3    (31) 
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Thus, the equation for the breakage rate constant, in this model [4], reads: 
 

( ) ( )
0 22

1 21 3 2 3 2 3 2

2

20.1 8.2 1.07 exp
4BR

KINd

Ek d d k d k dk
k E

−   = + + −  
   

∫
λ

σπ ε     (32) 

 
where λ0 is the size of the smallest eddies in the system.  

If we assume that most efficient for drop breakage are the drop collisions with eddies 
of size equal to that of the drops (because these eddies have largest kinetic energy [27,29]), 
one derives the following simple expression for the rate constant of drop breakage: 

 

( )
1 3

2 3 5 3 2 3~ exp OW
BR

C

k d
d d

 
− 

 

σε
ρ ε

     (33) 

 
The pre-exponential term in the above equation arises from the frequency of eddy-drop 
collisions, whereas the exponential term accounts for the breakage efficiency. It is seen that 
this equation is similar in structure to eq 24, but the density of the continuous phase, instead 
of that of the dispersed phase, appears in the exponential term (see the discussion on this point 
in ref 4). It is obvious from eq 33 that we cannot decribe the experimentally observed 
dependence of kBR on the oil viscosity by this model, because this viscosity does not appear in 
the equation.  
 Following the idea of Callabrese et al. [8-10], we can include the dissipated energy 
inside the drops in the collision efficiency to account for the contribution of the oil viscosity: 
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ρ ε
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where τD is the viscous stress inside the drop. Hence, the “activation” energy, which opposes 
drop deformation, is presented as a sum of EDIS, eq 34, and the surface enrergy, Eσ, eq 19. The 
respective equation for the breakage rate constant reads: 
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    (35) 

where the unknown parameters A0 and A1 are included, because the expressions used to 
construct eq 35 are approximate estimates. The constants A0 and A1 can be determined from 
the best fits to available experimental data. 
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6.5. Comparison of the experimental data for kBR with the predictions of eq 35. 
 
According to eq 35, the experimental data for the various systems should fall on a master line, 
if the following scaling is applied: 
  

( ) ( )
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ε
  (36) 

 

where dK is defined by eq 2; A0 and A1 are adjustable constants and all remaining parameters 
are known from the experiment. As seen from Figure 15, the experimental data for all studied 
systems follow a linear dependence down to the drop size corresponding to the Kolmogorov’s 
diameter (the last points on the right-hand side). Furthermore, the data for all systems fall on 
the same line, which indicates that eq 35 adequately represents the dependence of kBR on oil 
viscosity and drop diameter (at least for the drops larger than Kolmogorov’s diameter). The 
values of the adjustable constants A0 and A1, found from the best fits to the data, are presented 
in Table 5. For all systems A0, which plays the role of the “steric factor” in the molecular 
collision theory of chemical kinetics, is of the order of 0.1, whereas the values of A1 are very 
close to 1. These values of A0 and A1 are very reasonable from physical viewpoint and 
indicate that eq 35 describes correctly the process under consideration.   

For drops having diameter close to the Kolmogorov size, the deviation of the 
experimental data from the straight line is well pronounced for all studied emulsions. This is 
most probably due to the lack of accuracy in the used procedure for determination of kBR for 
these small drops. Note that for all systems, this is the 6th fraction of drops (starting from the 
largest ones) and their evolution is strongly affected by the values of pS,m, which are not 
known with high precision.  
 
Table 5. Numerical values of the constants A0 and A1, determined from the best fits to the 
experimental data, see Figure 16.  

ηD, cP 
σOW, 

mN/m 
ε×105, 
J/(kg.s) 

A0 A1 r2 

50  (SBO) 7.4 0.49 0.08 ± 0.03 1.2 ± 0.2 0.992 

50  (SBO) 7.4 1.92 0.1 ± 0.02 0.99 ± 0.09 0.9983 

50 (silicone oil) 10.9 0.53 0.1 ± 0.01 1.0 ± 0.05 0.998 

96 (silicone oil) 10.3 0.56 0.1 ± 0.05 1.1 ± 0.02 0.9795 
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Figure 15. Dependence of the logarithm of the normalized breakage rate constant, 
2 3

1 3
BRk d
ε

, as 

a function of the normalized diameter, for the various systems (see eq 36).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Breakage rate constant vs drop diameter for the various emulsions studied, along 
with the best fits by using eq 35 with A0 and A1 from Table 5.  
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7. Conclusions. 
 

Systematic set of experiments is performed to monitor the evolution of the drop size 
distribution, as a function of emulsification time, in emulsions subject to turbulent flow in a 
narrow-gap homogenizer. The experimental data are interpreted by using a kinetic scheme, 
which allows us to determine the rate constant of drop breakage, as a function of drop 
diameter. The kinetic scheme is based on the assumption that the drop breakage process is an 
irreversible reaction of first order and that multiple drops of various sizes are formed in the 
breakage event. From the experimental data, the breakage rate constants in the studied 
emulsions are determined, as functions of the physical properties of the system – drop size, 
viscosity of the oil phase, and hydrodynamic conditions during emulsification. The results 
show that the breakage rate constants rapidly decrease with the decrease of drop diameter and 
become virtually zero, when the drop diameter reaches the Kolmogorov’s size. At given drop 
size and oil viscosity, a four-fold increasing in the power dissipation rate leads to an increase 
of the breakage rate constant by more than 40 times. On the other hand, at similar 
hydrodynamic conditions, a 2-fold increase of the oil viscosity leads to more than a 3-fold 
decrease of the breakage rate constant.  

The obtained experimental dependencies of kBR on drop diameter are compared with 
theoretical models, proposed in the literature, and their modifications. It is shown that kBR can 
be considered as a product of the collision frequency between the drops and eddies with 
similar size, multiplied by a factor accounting for breakage efficiency. A modified expression 
for the breakage efficiency is proposed, which includes the contributions of both the surface 
extension energy and the energy dissipation inside the drops, in the process of drop 
deformation by the turbulent stresses. The theoretical dependence is in a reasonably good 
agreement with the experimental data for all studied systems.   
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