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Abstract. A colloidal particle adsorbed at a fluid interface could have an undulated, or 
irregular contact line in the presence of surface roughness and/or chemical inhomogeneity. The 
contact-line undulations produce distortions in the surrounding liquid interface, whose overlap 
engenders capillary interaction between the particles. The convex and concave local deviations 
of the meniscus shape from planarity can be formally treated as positive and negative 
“capillary charges”, which form “capillary multipoles”. Here, we derive theoretical expressions 
for the interaction between two capillary multipoles of arbitrary order. Depending on the angle 
of mutual orientation, the interaction energy could exhibit a minimum, or it could represent a 
monotonic attraction. For undulation amplitudes larger than 5 nm, the interaction energy is 
typically much greater than the thermal energy kT. As a consequence, a monolayer from 
capillary multipoles exhibits a considerable shear elasticity, and such monolayer is expected to 
behave as a two-dimensional elastic solid. These theoretical results could be helpful for the 
understanding of phenomena related to aggregation and ordering of particles adsorbed at a 
fluid interface, and for the interpretation of rheological properties of particulate monolayers. 
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1. Introduction 

 The lateral capillary forces between particles, which are adsorbed at a fluid interface, 
have been found to play an important role for the creation of two-dimensional (2D) arrays of 
particles and proteins [1-5], for the rheology of particulate monolayers [6,7], for Pickering 
emulsions [8], for development of coatings [9,10] and new materials [11-16]. When the 
adsorbed particles have an undulated (or irregular) contact line, by analogy with electrostatics, 
the respective capillary force can be formally treated as interaction between 2D multipoles. So 
far, only the capillary interaction charge–charge (monopole–monopole) and quadrupole–
quadrupole have been theoretically investigated [5, 17-20]. Here, our aim is to generalize the 
theory of this type capillary interaction for multipoles of arbitrary order, including monopole–
multipole. Below, we first give a brief overview of previous results. 
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Fig. 1. Lateral capillary forces between floating particles: the interaction is due to the overlap 
of interfacial deformations created by the separate particles. (a) The deformations are caused 
by the action of a normal force: particle weight and buoyancy [18,19], or electrodipping force 
[23,25]. (b) Even when the normal force is negligible, interfacial deformations could be 
engendered by an undulated contact line at the particle surface [6,7]. In this case, forces 
between the particles can be described as interactions between "capillary multipoles", in 
analogy with electrostatics; see Eq. (1.6) [5,20,21]. 
 

 The origin of the lateral capillary forces is the overlap of perturbations in the shape of a 
liquid interface, which are produced by attached particles [17-19]; for reviews see Refs. 
[5,7,22]. In the case of floating heavy particles, the interfacial perturbations are caused by the 
particle weight (Fig. 1a). In this case, using the superposition approximation, one can derive 
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the following expression for the energy of capillary interaction between the two particles 
[7,18,19,22]: 

∆W = −2πσ Q1 Q2 K0(qL)        (1.1) 

where σ is the interfacial tension, L is the distance between the centers of the two particles; 

Qi = ri sin(ψi), i = 1,2, are the so-called “capillary charges” [19]; ri and ψi are the contact-line 
radius and the slope angle at the contact line of the respective particle, see Fig. 1a; K0 is the 
modified Bessel function of the second kind and zero order; 

q2 = ∆ρg/σ,  ∆ρ = ρI − ρII       (1.2) 

where g is the acceleration due to gravity; ρI and ρII are the mass densities of the lower and 

upper fluid phases. For a floating spherical particle of radius Ri and contact angle αi, the 
capillary charge is given by the expression [7,18,19] 

( )iiiii DRqQ αα 332
6
1 coscos342 −+−≈ ,  (i = 1,2)   (1.3) 

where Di = (ρi − ρII)/ (ρI − ρII) and ρi is the particle mass density; eq 1.3 is valid for qRi << 1. 
With the help of Eqs (1.1)–(1.3) and typical parameter values, one can estimate that for 

Ri < 5−10 µm the energy ∆W is smaller that the thermal energy kT (k – Boltzmann constant, T 
– temperature), that is the capillary interaction between the particles becomes negligible. 
Physically, this means that in the considered case the particle weight is rather small to create a 
significant interfacial deformation. Nevertheless, in the latter case, interfacial deformation 
could be created, but owing to an electric (electrodipping) force, engendered by charges at the 
particle surface, rather than by the gravity effect [23-25]. 

 Even in the absence of electrodipping force, interfacial deformations can appear around 
small particles, if the contact line on the particle surface is undulated, as in Fig. 1b [5-7,20,21]. 
For example, this could happen in the cases of angular or irregular particle shape, presence of 
surface roughness, chemical inhomogeneity, etc. The undulations of the contact line produce 
distortions in the surrounding liquid interface, whose overlap also brings about a capillary 
interaction between the two particles. The interest toward such interactions has been growing 
during the last decade. First, Lucassen [6] investigated theoretically the capillary force between 
two cubic floating particles. He derived expression for the interaction energy per unit length of 
a contact line, which exhibits sinusoidal undulations in a vertical plane. The calculated 
capillary force has a minimum when the two particles are shifted normally or tangentially with 
respect to the contact line. As a consequence, the particulate monolayer exhibits elastic 
response to surface dilatational and shear deformations [6,7,21]. 
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Stamou at al. [20] examined theoretically the case of spherical particles of undulated 
contact lines and derived an asymptotic expression for the interaction energy between two 
capillary quadrupoles: 

∆W(L) ≈ −12πσ H2 cos(2ϕA − 2ϕB) 4

4
c

L
r

  (L >> 2rc)   (1.4) 

where H is amplitude of the undulation of the contact line, whose average radius is rc; the 

angles ϕA and ϕB are subtended between the diagonals of the respective quadrupoles and the 
line connecting the centers of the two particles (Fig. 2). The two particles spontaneously rotate 
to reach an optimal orientation for which the cosine in Eq. (1.4) is equal to one (maximal 

attraction and minimal energy). For example, taking σ = 70 mN/m, H = 20 nm, rc/L = 0.3, from 

Eq. (1.4) we calculate ∆W = 2085 kT. In other words, we are dealing with a physically 
considerable effect. 

 

 

 

 

 

 

Fig. 2. Sketch of two particles –“capillary quadrupoles”, A and B, separated at a distance L. 
The signs  “+”  and  “−”  symbolize convex and concave local deviations of the contact line 
from planarity. The ϕA and ϕB denote the angles of rotation of the respective particles with 
respect to their initial state (ϕA = ϕB = 0). 
 

In the case of two capillary quadrupoles, a more general expression for ∆W(L), valid in 

the whole range 2rc ≤ L < ∞, has been derived in Ref. [21]. This expression predicts that an 
adsorption monolayer of particles, which behave as capillary quadrupoles, should exhibit 
considerable shear elasticity. In general, at close contact between such two particles, one could 

have ∆W >> kT even for nm-sized particles [5, 21]. This strong capillary interaction can cause a 

two-dimensional aggregation and ordering of sub-µm particles which are captive at a fluid 
interface. Multibody interactions between capillary quadrupoles have been investigated by 
Fournier and Galatola [26], who showed that a system, composed of a large number of such 
particles, behaves as a jammed system.  

 Experimentally, interactions between capillary quadrupoles have been examined by 
Brown et al. [27], with photolithography-fabricated curved discs, having one hydrophilic and 
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one hydrophobic side. The contact line is attached to the edge of the curved disc. Different 
two-dimensional packing structures were obtained [27]. A variety of structures were produced 
in the experiments by Bowden et al. [2-4] on mesoscale self-assembly. 

 Theoretically, to describe the meniscus shape for the system depicted in Fig. 1b, one 

has to solve the linearized Laplace equation of capillarity for small meniscus slope, |∇ζ |2 << 1:  

∇2ζ = q2ζ           (1.5) 

Here ∇ is the two-dimensional gradient operator in the horizontal plane, xy. Using cylindrical 

coordinates (r,ϕ), one can determine the interfacial shape, z = ζ(r,ϕ), around a single particle 
with an undulated contact line [5,20,21]: 

ζ(r,ϕ) = ∑
∞

=

+
1

00 )()(
m

mm qrKAqrKA cos[m(ϕ − ϕ0,m)]     (1.6) 

were Am and ϕ0,m are constants of integration, and Km is the modified Bessel function of the 
second kind and m-th order. Equation (1.6) can be considered as a multipole expansion (a two-
dimensional analogue of that in electrostatics). The terms with m = 0, 1, 2, 3,... correspond to 
“charge”, “dipole”, “quadrupole”, “hexapole”, etc.  

 

 

 

 

 

 

 

 
 

 

Stamou et al. [20] noted that if the particles are freely floating, then the capillary force 
will spontaneously rotate each particle around a horizontal axis to annihilate the capillary 
dipole moment (unless the particle rotation is hindered), see Fig. 3. Therefore, the term with 
m = 1 in Eq. (1.6) has to be skipped. If the particles are sufficiently light, and the 
electrodipping force [25] is negligible, then the zero-order term (the capillary charge) 
disappears, and the quadrupolar term (with m = 2) becomes the leading term in the multipole 
expansion, Eq. (1.6).  

Fig. 3. The capillary force,
due to the interfacial tension,
σ, spontaneously rotates a
freely floating particle to
annihilate its capillary dipole
moment (m = 1). 
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Fig. 4. 2D arrays formed by capillary quadrupoles (m = 2) and hexapoles (m = 3); the signs “+” 
and “−” denote, respectively, positive and negative “capillary charges”, i.e. convex and 
concave local deviations of the meniscus shape from planarity at the contact line. 
(a) Quadrupoles form tetragonal close-packed array [21,27]. Hexapoles could form (b) close-
packed array; (c) hexagonal array with voids [2-4]. (d) Linear aggregates made of quadrupoles 
[20,27]. In contrast with the electric charges, two similar capillary charges attract each other, while 
the interaction between opposite capillary charges is repulsive. 

 
As already mentioned, for multipoles the sign and magnitude of the capillary force 

depend on the particle mutual orientation. For that reason, particles-quadrupoles (m = 2) will 
tend to assemble in a square lattice, whereas particles-hexapoles (m = 3) will preferably form a 
hexagonal lattice, with or without voids (Fig. 4) [3-5]. Another possibility is that the particles 
could form simple linear (chain) aggregates [5,20]. Such structures have been observed 
experimentally [2-4, 27]. 

 As noted in the beginning, theoretical description is available for the case of interaction 
between two capillary charges [18,19] and two capillary quadrupoles [20,21]. In other words, 
the theoretical description is incomplete, because the forces between other types of capillary 

(a) (b) 

(d) (c) 
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multipoles could be also of interest. For that reason, in the present paper we address the general 
problem for the interaction between two capillary multipoles, A and B, of arbitrary orders, mA 
and mB (mA, mB = 0, 1, 2, 3, …). For generality, we include the dipoles (mA, mB = 1), which 
could be realized at some special experimental conditions. (Dipolar interactions of non-electric 
origin have been found to play important role in various physical processes [28,29].) 

 In Section 2 we first consider an integral expression for the capillary interaction energy, 

∆W(L), and other basic equations. Next, in Section 3 we determine the meniscus shape around 
two floating particles of undulated contact line by solving the Laplace equation of capillarity in 

bipolar coordinates. In section 4 we derive analytical expression for ∆W(L) in the general case 

mA,mB ≥ 2 and 2rc ≤ L < ∞. Numerical results for ∆W(L) are presented in the case of two 
capillary hexapoles. Convenient asymptotic equations are also derived. Section 5 is devoted to 

the interaction of a capillary charge (mA = 0) with a higher order capillary multipole (mB ≥ 1). 
Finally, as an application, in section 6 an expression is derived for the surface shear elasticity 
of an adsorption monolayer from identical capillary hexapoles. 

 

2. Basic equations 

 We consider two solid particles, A and B, which are attached to a fluid-liquid interface 

that would be planar in the absence of particles. The horizontal projections of the contact lines 

at the particle surfaces are assumed to be circumferences, CA and CB, of radii rA and rB, 

respectively. We assume that the contact lines are undulated in vertical direction: 

)](cos[ AAAA ϕϕζ −= mH ,  )](cos[ BBBB ϕϕζ −= mH    (2.1) 

where AH  and BH  are the undulation amplitudes, mA and mB are the respective multipole 

orders (mA, mB = 1, 2, 3, …); ϕ is the running azimuthal angle, which provides 

parameterization of the respective circumference, CA or CB; the angles Aϕ  and Bϕ  characterize 

the rotation of the respective particles around a vertical axis (see Fig. 5).  

The meniscus shape around such a particle in isolation can be found by solving the 

Laplace equation, Eq. (1.5), using Eq. (2.1) as boundary condition. Thus, we obtain a special 

case of Eq. (1.6): 

)]([cos
)(
)(

),( YY
Ym

m
YY m

qrK
qrK

Hr
Y

Y ϕϕϕζ −= ,  Y = A, B   (2.2) 



 8

 

 

 

 

 

 

(a)      (b) 
 
Fig. 5. Sketch of two “capillary hexapoles”, A and B, separated at a distance L. (a) Initial state. 
(b) An arbitrary mutual orientation characterized by the angles ϕA and ϕB; CA and CB denote 
the projections of the respective contact lines, of radii rA and rB, on the xy-plane; n is inner 
running unit normal to CA and CB. The angle ω of the bipolar coordinates varies in opposite 
directions along CA and CB. 
 
For the air-water interface, we have q−1 = 2.7 mm. On the other hand, our typical particle sizes 

and interparticle distances are much smaller. Then, for qr << 1, we can use the asymptotic form 

of the modified Bessel function: Km(x) ≈ 1/xm [30,31]. Correspondingly, Eq. (2.2) acquires the 

simpler form:  

)](cos[B YYm

m
Y

Y m
r
r

H
Y

Y

ϕϕζ −= ,  Y = A, B    (2.3) 

The meniscus excess surface energy, due to the deformation z = ζ(x,y), is equal to the product 

of the surface tension, σ, and the excess surface area [19,20]: 

W(L) = σ [ ] 22/12 ||
2

1)||1(
mm

ζσζ ∇≈−∇+ ∫∫
SS

dsds      (2.4) 

where σ is the interfacial tension, Sm is the orthogonal projection of the meniscus on the plane 

xy, and ds is the surface element.  

 In the limiting case of two non-interacting particles, A and B, which are separated at a 

long distance, L >> rA, rB, W(L) can be obtained by calculating the integral in Eq. (2.4) 

separately for ζA and ζB, and summing the results. The differentiation of Eq. (2.3) yields: 

22

2
222

+
=∇

Y

Y

m

m
Y

YYY r
r

Hmζ         (2.5) 

Furthermore, we have: 
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2
12

2222 12 YY
r

m
m

YYYS Y Hmπdr
r

rHmds
Y

Y

Y

Y
==∇ ∫∫

∞

+
πζ      (2.6) 

(mY ≥ 1). Combining Eqs. (2.4) and (2.6), we obtain the meniscus excess surface energy in the 

limiting case L→∞: 

)(
2

)( 2
BB

2
AA HmHmW +=∞

σπ        (2.7) 

In the special case of mA = mB = 2, Eq. (2.7) reduces to the respective expression for capillary 

quadrupoles, derived in Ref. [20].  

Now, let us return to the more general case, when the interfacial deformations around 

the two particles overlap. As discussed after Eq. (2.2), we are dealing with the case qr << 1, in 

which Eq. (1.5) can be written in a simpler form: 

∇2ζ = 0          (2.8) 

Note that Eq. (2.3) satisfies Eq. (2.8). Next, we make the transformation: 

∇⋅(ζ∇ζ) = (∇ζ)⋅∇ζ + ζ∇2ζ = |∇ζ |2       (2.9) 

where at the last step we have used Eq. 2.8. Further, we combine eqs 2.4 and 2.9, and apply the 

Green theorem [32]: 

W(L) = )(
2

)(
2 ,

ζζσζζσ
∇⋅=∇⋅∇ ∫∑∫

= Ym CBAYS

dlds n      (2.10) 

where dl is the linear element along the contours CA and CB (Fig. 5b) and n is an inner unit 

normal to the respective contour. Finally, the energy of capillary interaction is: 

∆W(L) = W(L) − W(∞)        (2.11) 

where W(L) and W(∞) are given by Eqs. (2.10) and (2.7), respectively. 

 

3. Meniscus shape in bipolar coordinates 

 3.1. Introduction of bipolar coordinates 

To obtain an explicit expressions for the meniscus shape, ζ(x,y), and the capillary 

interaction energy, ∆W(L), we will use bipolar coordinates in the plane xy, which correspond to 
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the geometry of the system, see e.g. Refs. [33,34]. These coordinates, denoted τ and ω, are 

defined through the following set of equations:  

)sinh(τχ=x ,  )sin(ωχ=y ,  ))cos()/(cosh( ωτχ −= a   (3.1) 

The lines τ = const. and ω = const. are two families of mutually orthogonal circumferences 

(Fig. 6). In eq 3.1, a is a parameter related to the radii of the two contact lines, rA and rB, and to 

the distance between the two particles, L: 

])(][)([
4
1 2

BA
22

BA
2

2
2 rrLrrL

L
a −−+−=       (3.2) 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 6. Bipolar coordinates (τ,ω) in the xy-plane. The coordinate lines τ = const. and ω = const. 
represent two families of mutually orthogonal circumferences. The contact line projections, CA 
and CB, correspond to τ = −τA, and τ = τB. 
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 The projections of the two contact lines on the xy plane, AC  and BC , correspond to 

τ = −τA and τ = τB, respectively, where: 

)
2

(arccosh
A

2
B

2
A

2

A rL
rrL −+

=τ ,  )
2

(arccosh
B

2
A

2
B

2

B rL
rrL −+

=τ    (3.3) 

])1(ln[)(arccosh 2/12 −+= xxx        (3.4) 

Other useful relationships, which follow from Eqs. (3.2) and (3.3), are: 

A
A )(sinh

r
a

=τ ,  
B

B)(sinh
r
a

=τ       (3.5) 

In bipolar coordinates, the linearized Laplace equation of capillarity, Eq. (2.8), acquires the 

form: 

02

2

2

2
=

∂

∂
+

∂

∂

ω
ζ

τ
ζ          (3.6) 

where ζ = ζ(τ,ω), is the deviation of the fluid interface from planarity. We will seek the 

solution of Eq. (3.6) in the form of a Fourier expansion: 

)](sinh[
)](sinh[)]sin()cos([

BA

A

1
B ττ

ττ
ωωζ

+
+

+= ∑
∞

= n
nnDnCH

n
nn  

)](sinh[
)](sinh[)]sin()cos([

BA

B

1
A ττ

ττωω
+
−

++ ∑
∞

= n
nnFnEH

n
nn      (3.7) 

 

 3.2. Determination of the unknown coefficients 

To determine the unknown coefficients, Cn, Dn, En, and Fn, we substitute Eq. (3.7) in 

the boundary condition, Eq. (2.1). Thus we obtain: 

∑
∞

=

+=−
1

BB )]sin()cos([)](cos[
n

nn nDnCm ωωϕϕ       at Bττ =    (3.8) 

∑
∞

=

+=−
1

AA )]sin()cos([)](cos[
n

nn nFnEm ωωϕϕ       at Aττ −=    (3.9) 

To proceed further, we need a connection between the angles ϕ and ω. For simplicity, we 

choose the direction of increase of angle ϕ to be the same as of ω, that is clockwise for the 
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circumference CA, and anticlockwise for CB. Next, in the relationship sin(ϕ) = y/rY, we 

substitute y from Eq. (3.1) and rY from Eq. (3.5); thus, we obtain: 

)cos()cosh(
)sin()sinh()sin(
ωτ

ωτ
ϕ

−
=

Y

Y    (Y = A, B)    (3.10) 

From Eq. (3.10) we deduce [34] 

)cos()cosh(
1)cos()cosh()cos(

ωτ
ωτ

ϕ
−

−
=

Y

Y    (Y = A, B)    (3.11) 

Equations (3.10) and (3.11) indicate that sin(ϕ) and cos(ϕ) are, respectively, odd and even 

functions of ω. Hence, we have: 

0d)sin()cos( =∫
−

π

π

ωωϕ nm ,  0d)cos()sin( =∫
−

π

π

ωωϕ nm    (3.12) 

With the help of Eq. (3.12), from Eq. (3.8) and (3.9) we derive 

),,()cos( BBBB τϕ mnAmCn = ,  ),,()sin( BBBB τϕ mnBmDn =    (3.13) 

),,()cos( AAAA τϕ mnAmEn = , ),,()sin( AAAA τϕ mnBmFn =    (3.14) 

where the functions A(n,m,τY) and B(n,m,τY) do not depend on the angles ϕA and ϕB, and are 

defined as follows: 

∫
−

=
π

π

ωωϕ
π

τ d)cos()cos(1),,( nmmnA Y       (3.15) 

∫
−

=
π

π

ωωϕ
π

τ d)sin()sin(1),,( nmmnB Y       (3.16) 

where ϕ is related to ω by means of Eq. (3.10). In Appendix A, we prove that  

[ ]
β

βττ
=

−
−

−

−
−

==
z

mn
m

m

YY zz
dz
d

m
mnBmnA )1(

)!1(
1),,(),,( 1

1

1
   (3.17) 

)exp( Yτβ −=    (Y = A, B)      (3.18) 

For computations, it is more convenient to carry out the differentiation in Eq. (3.17) and to 

present the result as a polynomial (see Appendix A): 
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knm
nm

k

km

Y kknkm
knmmmnA 2

),min(

0 !)!()!(
)!1()1(),,( −+

=

−

∑ −−
−−+−

= βτ     (3.19) 

where min(m,n) denotes the smallest of m and n. Finally, in view of Eqs. (3.13), (3.14) and 

(3.17), Eq. (3.7) acquires the form: 

      ∑
∞

= +
−

−=
1 BA

B
AAAAA )](sinh[

)](sinh[)cos(),,(
n n

nmnmnAH
ττ
ττ

ϕωτζ  

∑
∞

= +
+

−+
1 BA

A
BBBBB )](sinh[

)](sinh[)cos(),,(
n n

nmnmnAH
ττ
ττϕωτ    (3.20) 

where A(n,m,τY) is given by Eq. (3.19). 

 

 4. Energy of interaction between multipoles 

 4.1. General expression 

 In bipolar coordinates, Eq. (2.10) takes the form: 

∫∫
− −=− = ∂

∂
−−

∂
∂

=
π

π ττ

π

π ττ τ
ζτωζωσ

τ
ζτωζωσ

AB

),(
2

),(
2

)( AB ddLW    (4.1) 

Next, from Eq. (3.20) we calculate the derivative ∂ζ/∂τ, which is then substituted in Eq. (4.1). 

The result can be obtained in a relatively compact form with the help of the identities: 

nkYYYY dmnmk ,)cos()cos( δπωϕωϕω
π

π

=−−∫
−

     (4.2) 

nkmmdmnmk ,AABBBBAA )cos()cos()cos( δϕϕπωϕωϕω
π

π

−=−−∫
−

  (4.3) 

Thus, we derive the sought for expression for the surface excess energy W(L): 

)cos()(
AABBBAB

2
BA

2
A ϕϕ

πσ
mmGHHSHSHLW

−−+=     (4.4) 

where 

∑
∞

=

+=
1

2
BA ),,()](coth[

2n
YYY mnAnnS τττ   (Y = A, B)   (4.5) 
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∑
∞

= +
≡

1 BA

BBAA

)](sinh[
),,(),,(

n n
mnAmnAnG

ττ
ττ        (4.6) 

The energy of capillary interaction, ∆W(L), can be obtained by substitution of Eq. (4.4) into 

Eq. (2.11). This in principle, solves the problem, because A(n,m,τY) is a known function, given 

by Eq. (3.19). The derivative, F = −dW(L)/dL, gives the interaction force. For mA = mB = 2, Eq. 

(4.4) reduces to Eq. (3.17) in Ref. [21]; note that (by definition) ϕA in the latter reference is 

π − ϕA in the present paper.  

In the case of close contact, L → rA + rB, from Eqs. (3.2) and (3.5) we obtain a = 0 and 

τA = τB = 0. At a first glance, it could seem that SY and G, given by Eqs. (4.5) and (4.6), are 

divergent in this limit. However, it turns out that for L → rA + rB, the functions SY and G take 
finite values, because the numerators in Eqs. (4.5) and (4.6) tend to zero. The respective 
limiting values of SY and G can be computed numerically. 

 Equations (4.4)–(4.6) are applicable for calculation of the interaction energy between 

two capillary multipoles for every mA, mB ≥ 1, and for rA + rB ≤ L < ∞. The condition mA, mB ≥ 
1 is necessary, because if mY = 0 (capillary charge), the integral in Eq. (2.6) is divergent. For 
this reason, in section 5 we separately investigate the interaction of a capillary charge with 
capillary multipoles of various orders. 

 4.2. Asymptotics for large distance L 

 For large interparticle distances, we have 

1)exp( <<≈−≡
L
rY

YY τβ   (Y = A, B)     (4.7) 

see Eqs. (3.3) and (3.4). With the help of Eq. (4.7), one can determine the leading terms in the 
asymptotics of SA, SB and G for large L, see Eqs. (4.5), (4.6) and Appendix B: 

...
2 2

2
B

2

2
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m

m

L
r

L
r

GG          (4.10) 

where G0 is constant (independent of L): 
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∑
=

+

−−−
−

=
),min(

1 BA

BA
0

BA BA

)!1(!)!()!(
!!)1(2mm

n

mm

nnnmnm
mmG       (4.11) 

Values of G0, corresponding to different mA and mB, are listed in Table 1. 

Table 1. Values of G0 for different mA and mB 

mA mB G0 
2 2 12 
2 3 -24 
2 4 40 
2 5 -60 
3 3 60 
3 4 -120 
3 5 210 
4 4 280 
4 4 -560 
5 5 1260 

 
One can check that the first terms in Eqs. (4.8) and (4.9), mA/2 and mB/2, after substitution in 

Eq. (4.4), give the expression for W(∞), Eq. (2.7). Then, for |mA − mB| ≤ 1, the leading term in 

∆W for L→∞ comes from the function G, see Eqs. (2.11), (4.4) and (4.10): 

)(
BA

BBAABA0
BA

BA

)cos()( mm

mm

L
rr

mmHHGLW
+

−−≈∆ ϕϕπσ     (4.12) 

For two quadrupoles, mA = mB = 2, we have G0 = 12, and Eq. (4.12) gives Eq. (1.4) as a special 
case for HA = HB = H and rA = rB = rc. For two hexapoles, mA = mB = 3, we have G0 = 60, and 
Eq. (4.12) reduces to 

∆W(L) ≈ −60πσ H2 cos(3ϕA − 3ϕB) 6

6
c

L
r

  (L >> 2rc)   (4.12a) 

 If the particles are free to rotate around a vertical axis, the orientational angles ϕA and 

ϕB will spontaneously reach appropriate values, for which the cosine in Eq. (4.12) is equal to 1 

for G0 > 0 (or −1 for G0 < 0), and thus to reach the minimal value of ∆W (the maximal 

attraction) for the given L.  
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 In Table 2, we give the form of Eq. (4.12) for some special cases, corresponding to 

different mA and mB, including the case with mA = 0, where one of the two interacting particles 

represents capillary charge. The latter case is investigated in section 5. 

Table 2. Asymptotic expressions for ∆W(L) for some values of mA and mB 

Type of 
interaction  (mA, mB) Interaction Energy ∆W(L) for 1

BA , −<<<< qLrr  

charge – 
quadrupole (0, 2) 

2
B

BBA )](2cos[
2







−−

L
rHQ πϕσπ  

charge – 
multipole (0, mB) 

B
B

BBBA )](cos[
2

m

L
rmHQ 






−− πϕσπ  

dipole – 
quadrupole (1, 2) 3

2
BA

BABA )]2cos[4
L
rrHH ϕϕπσ −  

quadrupole – 
quadrupole (2, 2) 4

2
BA

BABA
)()](2cos[12

L
rrHH ϕϕπσ −−  

quadrupole – 
hexapole (2, 3) 5

3
B

2
A

BABA )32cos(24
L

rrHH ϕϕπσ −  

hexapole – 
hexapole (3, 3) 6

3
B

3
A

BABA )33cos(60
L

rrHH ϕϕπσ −−  

hexapole – 
octupole (3, 4) 7

4
B

3
A

BABA )43cos(120
L

rrHH ϕϕπσ −  

multipole – 
multipole (mA, mB) )(

BA
BBAABA0

BA

BA

)cos( mm

mm

L
rr

mmHHG
+

−− ϕϕπσ  

 

 4.3. Example: Interaction between two hexapoles 

To calculate the exact dependence ∆W(L), we used Eqs. (4.4)–(4.6), together with Eq. 

(3.3). Figure 7 shows ∆W(L)–curves for two identical particles–hexapoles: HA = HB = H and 

rA = rB = rc. The different curves correspond to different values of the phase angle:  

∆ϕ ≡ 3ϕA − 3ϕB         (4.13) 

see Fig. 5b. For 5° < ∆ϕ < 25°, the dependence ∆W(L) has a minimum, i.e. the interaction is 

attractive at long distances and repulsive at short distances. In contrast, for 0 ≤ ∆ϕ < 5° the 
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Dimensionless distance, L/(2rc)
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interaction is attraction at all distances. This result qualitatively resembles the results for two 

capillary quadrupoles [21].  

 The global minimum of ∆W (maximal attraction), which corresponds to ∆ϕ = 0 and 

L = 2rс, is 

∆Wmin ≈ −0.6 (πσH2)         (4.14) 

For σ = 70 mN/m; H = 10 nm and T = 25 °C, from Eq. (4.14) we calculate ∆Wmin = −3218 kT. 

This result indicates again that the energy of this type capillary interaction is very large 

compared to the thermal energy kT, even for undulations of 10 nm amplitude. It is worthwhile 

noting that for a given H, ∆Wmin does not depend on rc (that is on the particle size), see Eq. 

(4.14). In other words, for the same H, the energy of capillary attraction at close contact is the 

same for hexapoles of radius, say, 100 nm and 10 µm. 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Energy of interaction between two capillary hexapoles (mA = mB = 3), ∆W(L), scaled 
with πσH2, plotted vs. L/(2rc). The lines are calculated by means of Eqs. (4.4)–(4.6) and (3.3) 
for two identical particles: HA = HB = H; rA = rB = rc. The different curves correspond to 
different values of the phase angle ∆ϕ, denoted in the figure. The dashed line represents the 
asymptotic expression for large interparticle distances, Eq. (4.12a), for ∆ϕ = 0. 
 

The lowest dashed line in Fig. 7 is calculated with the asymptotic formula, Eq. (4.12a), 

for mA = mB = 3 and ∆ϕ = 0. In the figure it is seen that the asymptotic formula becomes 
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sufficiently accurate for L/(2rc) > 1.5. Note, however, that this asymptotic formula cannot 

describe the non-monotonic behavior of ∆W(L) for 5° < ∆ϕ < 25°. 

 Due to the cosine in Eq. (4.4), at fixed L, the function ∆W(∆ϕ) has a well-pronounced 

minimum at ∆ϕ = 0. As in the case of capillary quadrupoles [21], the existence of such a 

minimum is the reason for the appearance of considerable shear elasticity in adsorption 

monolayers of particles-hexapoles. Expression for the respective modulus of shear elasticity is 

derived in section 6. 

 

5. Interaction between charge and multipole 

 5.1. Meniscus profile 

 We consider again two solid particles, A and B, which are attached to a fluid-liquid 

interface. The horizontal projections of the contact lines at the particle surfaces are assumed to 

be circumferences, CA and CB, of radii rA and rB, respectively. We assume that particle A is 

capillary charge, while particle B is capillary multipole of order mB (mB = 1, 2, 3,…). As 

before, the meniscus shape is described by the equation z = ζ(x,y). At the contact lines we have 

the following boundary conditions: 

AA
HC =ζ ,  )](cos[ BBBB

ϕϕζ −= mHC      (5.1) 

 To solve the problem, in this section we will employ the superposition method, i.e. we 

will seek the solution in the form 

BA ζζζ +=           (5.2) 

where ζA and ζB satisfy the linearized Laplace equation of capillarity, 

∇2ζA = q2ζA,  ∇2ζB = q2ζB       (5.3) 

see Eq. (1.5), and the boundary conditions: 

AcA,A A
HC =≡ ζζ          (5.4) 

)](cos[ BBBcB,B B
ϕϕζζ −=≡ mHC        (5.5) 

0
AB BA == CC ζζ          (5.6) 
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The boundary conditions (5.4)–(5.6) guarantee the fulfillment of the boundary condition (5.1). 

In the considered case, qL << 1, the solution for ζB, which satisfies eqs. (5.5) and (5.6), can be 

found by formally substituting HA = 0 in Eq. (3.20): 

∑
∞

= +
+

−=
1 BA

A
BBBBBB )](sinh[

)](sinh[)cos(),,(
n n

nmnmnAH
ττ
ττ

ϕωτζ    (5.7) 

On the other hand, ζA can be presented in the form: 

corr
AA0AA )( ζρζ += qKQ ,  )( A0AA rqKQH =     (5.8) 

where QA is the capillary charge; ρA is position vector shown in Fig. 8, and corr
Aζ  is a small 

correction of the leading order solution. The role of corr
Aζ , which also satisfies the Laplace 

equation (5.3), is to guarantee the fulfillment of the boundary condition (5.6): 

0
A

corr
A =Cζ ,  )( A0A

corr
A B

ρζ qKQC −=      (5.9) 

 

 

 

 

 
 

 

 

Fig. 8. Two sets of polar coordinates in the xy-plane, (ρA,ψA) and (ρB,ψB), associated with the 
two particles. P is an arbitrary point in the plane. CA and CB are circumferences of radius rA 
and rB, respectively, representing the horizontal projections of the respective contact lines.  
 

 5.2. Interaction energy 

In the considered case, qL << 1, we can use Eqs. (2.10) and (4.1) for the meniscus 

excess surface energy, W(L). In view of the latter two equations, using Eqs. (5.4) and (5.7), one 

can present the integral over CA in the form: 

∫∫ ∇⋅=+∇⋅
AA

)()]([ AAcA,BA
CC

dlHdl ζζζζ nn      (5.10) 

Using the approach from section 4.1, we express the integral over CB in the form: 
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∫∫ +∇⋅=+∇⋅
BB

B
2
BcB,AcB,BA 2)()]([

CC

SHdldl πζζζζζ nn     (5.11) 

where Eqs. (5.5) and (5.7) have been used; SB is defined by Eq.(4.5). Finally, from Eqs. (2.10), 

(5.2), (5.4)–(5.6), (5.10) and (5.11), we obtain:  

∫∫ +∇⋅+∇⋅=
BA

B
2
BcB,AAA 2)()()(2

CC

SHdldlHLW πζζζ
σ

nn    (5.12) 

Let us first calculate the cross-interaction integral in Eq. (5.12), defined as: 

∫ ∇⋅≡
B

cB,AAB )(
C

dlI ζζn         (5.13) 

In the calculations we will use two sets of polar coordinates in the xy-plane, (ρA,ψA) and 

(ρB,ψB), with respect to the two particles (Fig. 8). A helpful relationship between these 

coordinates is given by the cosine theorem: 

BB
2
B

22
A cos2 ψρρρ LL ++=         (5.14) 

In terms of these coordinates, we can express Eq. (5.13) in the form: 

∫ ∂
∂

−=
π

ψ
ρ
ζ

ψϕ
2

0
B

B

A
BBBBBBAB )cos()cos( dmmrHI      (5.15) 

where we have substituted ζB,c from Eq. (5.5) and have used that ζA is an even function of ψB. 

Further, we the help of Eqs. (5.8) and (5.14), we calculate the derivative in Eq. (5.15) up to 

terms on the order of (qL)2: 

)cos(
)(

BB2
A

A

B

A

A

A0
A

B

A ψρ
ρρ

ρ
ρ

ρ
ρ
ζ LQ

d
qdK

Q +−=
∂
∂

=
∂
∂     (5.16) 

With ρB = rB and ρA given by Eq. (5.14), we substitute Eq. (5.16) into Eq. (5.15), and carry out 

the integration. The result reads:  

B

B
B

BBBAAB )](cos[ m

m

L
r

mHQI πϕπ −−=       (5.17) 

Further, using Eq. (5.8), we obtain 

AAAA 2)(
A

IQdl
C

+=∇⋅∫ πζn         (5.18) 
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where  

∫ ∇⋅=
A

)( corr
AAA

C

dlI ζn         (5.19) 

With the help of Eq. (5.14), in the boundary condition at CB, Eq. (5.9), we expand in series for 

qL << 1 and rB/L << 1: 

...)2cos(
2
1cos)(/ B

2
B

B
B

0A
corr
A +






−+−= ψψζ

L
r

L
rqLKQ       at CB  (5.20) 

Using Eq. (5.20), we obtain corr
Aζ  as a solution of the Laplace equation (5.3), in a form 

analogous to the multipole expansion, Eq. (1.6): 

...cos)(
)(
)(

B
B

BB
AB0

B0

0
A

corr
A ++−= ψ

ρ
ρζ

r
L
rQqK

rqK
LqK

Q     (5.21) 

One could check that the substitution of Eq. (5.21) into Eq. (5.19) yields IAA = 0, within an 

accuracy O[(rY/L)5]. In a final reckoning, with the help of Eqs. (5.10), (5.11), (5.13), (5.17) and 

(5.18), we bring Eq. (5.12) in the form: 

B

B
B

BBBAB
2
BA

2
A )](cos[

2
1)(

m

m

L
r

mHQSHGQLW πϕ
πσ

−−+=     (5.22) 

where GA = K0(qrA) + O[(rY/L)5], see Eq. (5.8). 

 

 5.3. Discussion 

 In fact, the last term in Eqs. (4.4) and (5.22), which depends on the angles of mutual 

orientation, ϕA and ϕB, give the essential part of the interaction between the two capillary 

multipoles. The other terms, proportional to SA(L), SB(L) and GA(L), originate from the “rigid” 

boundary conditions imposed at the contact lines, see e.g. Eqs. (5.4)–(5.6). For example, the 

requirement 0
BA =Cζ  leads to the appearance of a series of correction multipole expansion at 

CB, see Eq. (5.20). However, if the particle B is freely floating, then the mean level and slope 

of its contact line will adjust to comply with the mean elevation and slope of ζA(ρA) at CB. To 

take into account such effects of “contact-line adjustment”, one has to carry out additional 

theoretical investigation, which is out of the scope of the present article. 
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6. Shear elasticity of monolayer from hexapoles 

 6.1. Basic equations 

 Here, we give an application of the derived equations to derive an expression for the 

shear elasticity of a monolayer of particles, which behave as capillary hexapoles. Such particles 

have been investigated experimentally [2-4]. Our results represent an upgrade of Ref. [21], 

where analogous expressions for capillary quadrupoles have been derived.  

We consider an adsorption layer of capillary hexapoles, which is subjected to shear 

along the y-axis, see Fig. 9. Following the thermodynamic approach by Landau and Lifshitz 

[35], one can determine the shear elastic modulus, ES, by differentiation of the free energy of 

the system, Ω, with respect to the shear deformation; see Eq. (4.1) in Ref. [35]: 

yxyx uu
E

∂
Ω∂

=
2

1
S          (6.1) 

where the coefficient of surface shear elasticity, ES, is a 2D analogue of the coefficient of 

Lamé, µ, in Ref. [35]; Ω is free energy (or grand thermodynamic potential) per unit area of the 

adsorption layer. For small shear angles, the relative displacement along the y-axis, uyx = 

(∂uy/∂x)/2, is equal to ϕS/2, where ϕS is the shearing angle. For not too small particles, the 

entropy contribution in Ω is small in comparison with the contribution from the particle-

particle interaction energy. Then, an approximate expression for Ω can be obtained by taking 

into account only the interactions between the first neighbors in the particle monolayer: 

2
1

1
11 3

)()(
2
1

L
LULUN =≈Ω         (6.2) 

Here, N1 is number of particles per unit area of the adsorption monolayer; L1 is the distance 

between two neighboring particles (Fig. 9); U(L1) is the interaction of a given particle in the 

monolayer with all of its first neighbors; the multiplier 1/2 in Eq. (6.2) appears because we 

must account only once the interaction for each pair of particles. We have also used the fact 

that at hexagonal packing, the area per particle in the monolayer is A1 = 1/N1 = 2
1)2/3( L . 

Having in mind that uyx = ϕS/2, we combine Eqs. (6.1) and (6.2) to obtain: 

S

1

S
2
1

S
)(1

3
2

ϕϕ ∂
∂

=
LU

L
E         (6.3) 
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Fig. 9. Hexagonally packed layer of capillary hexapoles, which is subjected to shear 
deformation along the y-axis. L1 is the center-to-center distance between two neighboring 
particles; ϕS is the shearing angle; ϕH is the angle of rotation of each particle due to the shear 
deformation; the other notations are explained in the text. 
 

During the shear deformation, depicted in Fig. 9, the neighboring “columns” of particles 

undergo a mutual displacement along the y-axis. Thus, the right-hand side column is sifted at a 

distance ∆y with respect to the central column (Fig. 9). Then, the shear angle is 

11
S 3

2
)60sin( L

y
L

y
x
y ∆

=
°

∆
=

∆
∆

≈ϕ        (6.4) 

where ∆x is the distance between the two columns. On the other hand, in the derivations below 

we will employ the auxiliary angle θ, which is defined as follows (see Fig. 9): 
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11 2
3)60sin(
L

y
L

y ∆
=

°∆
≈θ         (6.5) 

Comparing Eqs. (6.4) and (6.5), we obtain: 

S4
3 ϕθ =           (6.6) 

 
 6.2. Interaction of a given particle with its first neighbors 

 The interaction energy, U(L1), of the central particle in Fig. 9 with its first neighbors 

can be expressed in the form: 

)(2 321 WWWU ++=          (6.7) 

where W1, W2, and W3 is the energy of interaction of the central particle, respectively, with 

particles 1, 2 and 3, shown in Fig. 9; the multiplier 2 in Eq. (6.7) accounts for the fact that the 

energy of interaction with remaining 3 neighbors is the same as with the particles 1, 2 and 3, 

owing to the symmetry of the system. For identical capillary hexapoles, mA = mB = 3, Eq. (4.4) 

yields: 

[ ])33cos(2)( AB11
2

1 ϕϕπσ −−= GSHLW       (6.8) 

where  

BA HHH == , )()( 1B1A1 LSLSS == , )( 11 LGG =    (6.9) 

As noted in Ref. [21], the shear leads to a rotation of the hexapoles to a given angle (with 

respect to their initial orientation), which will be denoted by ϕH. In general, ϕH ≠ ϕS. Since the 

particles have identical environment, it is natural to assume that the angle of rotation, ϕH, is the 

same for all of them. Following Ref. [21], we will find ϕH by minimization of the total 

interaction energy between the particles, U(L1,ϕS,ϕH): 

0
1S ,H

=
∂
∂

L

U
ϕϕ

          (6.10) 

First, let us consider the interaction of the “central particle” with “particle 1” (Fig. 9). 

Both particles are rotated at an angle ϕH, anticlockwise. If we take as reference mark the 

negative “capillary charge” denoted in Fig. 9, then for the central particle we have ϕA = (5/6)π 
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− ϕH. In addition, for particle 1 we have ϕB = (5/6)π + ϕH. Consequently, ∆ϕ ≡ ϕB − ϕA = 2ϕH. 

Substituting the latter value in Eq. (6.8), we get: 

[ ])6cos(2 H11
2

1 ϕπσ GSHW −=        (6.11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Calculation of the capillary interaction between the central particle and particle 2 in Fig. 9. 
From the triangle POO 2′  one sees that ψ + 60° − θ = 90°. The other notations and details are 
explained in the text. 

 

Second, let us consider the interaction of the central particle with particle 2 (Fig. 10). 

Taking as a reference marker the positive “capillary charge”, denoted in Fig. 10, for the central 

particle we have ϕA = (5/6)π + θ − ϕH. In addition, for particle 2 we have ϕB = π − ψ + ϕH, 

where the angle ψ is also shown in Fig. 10. From triangle POO 2′  we obtain ψ = π/2 − (π/3 − 

θ). As a result, we get ϕB = π − π/6 − θ + ϕH. Consequently, ϕB − ϕA = 2θ − 2ϕH. Substituting 

the latter value in Eq. (6.8), we get: 

[ ])66cos(2 H11
2

2 θϕπσ −−= GSHW        (6.12) 

In a similar way, it can be proven that W3 = W2. Hence, in view of Eq. (6.11) and (6.12), 

Eq. (6.7) acquires the form: 
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[ ])66cos(2)6cos(62 H1H11
2 θϕϕπσ −−−= GGSHU     (6.13) 

Next, to determine ϕH, we substitute Eq. (6.13) into Eq. (6.10). In this way, using the 

approximation sin(x) ≈ x (for x << 1), we obtain: 

SH 2
1

3
2 ϕθϕ ==          (6.14) 

where at the last step we have employed Eq. (6.6). The substitution of Eqs. (6.6) and (6.14) 

into Eq. (6.13) yields: 

( )[ ]S1S11
2 )2/3(cos2)3cos(62 ϕϕπσ GGSHU −−=      (6.15) 

Equation (6.15) gives the explicit dependence of U on ϕS, which, after a substitution in 

Eq. (6.3), finally leads to an expression for the surface shear elasticity: 

2
11S )/(318 LHGE σπ=         (6.16) 

In general, we have L1 ≥ 2rc, because the electrostatic repulsion between the particles across 

the non-aqueous phase could keep them separated at a certain distance apart [36,37]. Then, 

G1 = G(L1) has to be calculated from Eqs. (3.3), (3.19) and (4.6). If such repulsion is missing, 

and the particles are in close contact, then L1→2rc, τY→0, and Eq. (4.6) gives a finite limiting 

value for G1, which has been determined by us numerically: 

...60816.2)2( c1 == rLG         (6.17) 

Substituting the latter value for G1 in Eq. (6.16), we get the value of the shear elasticity at close 

contact between the particles: 

2
cS )2/(46.255 rHE σ=         (6.18) 

For example, substituting σ = 50 mN/m and H/(2rc) = 0.1, from eq. (6.18) we obtain ES = 

127.7 mN/m, which is a considerable value. Such monolayer should behave as 2D elastic solid, 

rather than 2D fluid. (For a fluid, ES = 0 by definition.) 

 

 7. Summary and conclusions 

 A colloidal particle adsorbed at a fluid interface could have an undulated, or irregular, 

contact line when the particle shape is non-spherical, angular or irregular, in the presence of 
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surface roughness, chemical inhomogeneity, etc. The contact-line undulations produce 

distortions in the surrounding liquid interface, whose overlap engenders capillary interaction 

between two adsorbed particles (Fig. 1b). The convex and concave local deviations of the 

meniscus shape from planarity can be theoretically treated as positive and negative capillary 

charges, which form capillary multipoles. Correspondingly, the meniscus shape can be 

expressed as a multipole expansion, Eq. 1.6. Until now, theoretical expressions have been 

derived only for the charge-charge [18,19] and quadrupole-quadrupole [20,21] interaction 

energy. As a generalization of previous studies, here, we derive expressions for the interaction 

between two capillary multipoles of arbitrary order, see Eqs. (4.4)–(4.6). Simpler asymptotic 

expressions for the interaction energy at not-too-short interparticle distances are also derived, 

see Eqs. (4.12) and (5.22). 

Numerical results are presented for the energy of interaction between two capillary 

hexapoles as a function of the interparticle distance, L, and phase angle, ∆ϕ; see Fig. 7. 

Depending on ∆ϕ; the interaction could be either monotonic attraction, or monotonic repulsion, 

or it is attraction at long distances but repulsion at short distances. The capillary interaction 

energy scales as πσH2 (σ - interfacial tension, H – undulation amplitude). Typically, for H ≥ 5 

nm, this energy is much greater than the thermal energy kT. For this reason, the forces between 

capillary multipoles certainly influence many phenomena with particles, particle monolayers 

and particle arrays at fluid interfaces, although experimentally, these effects are still 

insufficiently explored. 

Based on the results for the interaction energy, one can predict also the rheological 

behavior of adsorption monolayers from capillary multipoles. As an illustration, in section 6 

we derived an expression for the surface shear elasticity, ES, of a monolayer from capillary 

hexapoles, Eq. (6.16). Owing to the pronounced angular dependence of the interaction energy, 

the adsorption monolayer of capillary multipoles exhibits a considerable shear elasticity, and 

should behave as a 2D elastic solid, rather than 2D fluid. 

 The results of this paper could be helpful for the understanding of some phenomena 

related to aggregation and ordering of particles adsorbed at a fluid interface, and for the 

interpretation of the rheological behavior of monolayers from non-spherical particles. Related 

research fields are the particle-stabilized (Pickering) emulsions and the two-dimensional self-

assembly of microscopic particles. 
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Appendix A. The coefficients A(n,m,τ) and B(n,m,τ) 

 Here, our aim is to determine the coefficients A(n,m,τY) and B(n,m,τY), i.e. to calculate 

the integrals in Eqs. (3.15) and (3.16). For this purpose, let us first consider the auxiliary 

integral 
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where m ≥ 0; n ≥ 1, α = exp(τY) > 1; i is the imaginary unit; z is a complex variable; the 

integration is carried out over the unit circumference, |z| = 1, in the complex plane; see Fig. 11.  

 

 

 
 

 

 

 

 

 

Fig. 11. The integration in Eq. (A.1) is carried out over the unit circumference, |z| = 1, in the 
complex plane. 
 

The integral in Eq. (A.1) is equal to zero, because the integrand has no singular points inside 

the area encircled by the contour of integration. Next, let us substitute 

)exp( ωiz =       at   1=z         (A.2) 

With the help of Eq. (A.2) we obtain: 
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Having in mind the definition of α, and Eqs. (3.10) and (3.11), we bring Eq. (A.3) in the 

following simpler form: 

)exp(1 ϕ
α
α i

z
z

=
−
−          (A.4) 

Further, we substitute Eqs. (A.2) and (A.4) into Eq. (A.1), and derive: 
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Comparing the definitions, Eqs. (3.15) and (3.16), with Eq. (A.5), we obtain 2I(n,m,α) 

),,(),,( YY mnBmnA ττ −= . However, Eq. (A.1) shows that I(n,m,α) = 0. Hence, 

),,(),,( YY mnBmnA ττ =   (n ≥ 1)      (A.6) 

See also Eq. (3.17) in the main text. Next, let us consider the following integral: 
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where m ≥ 1, and n ≥ 1. In Eq. (A.7), the integrand has a pole of m-th order at α/1=z , inside 

the unit circle 1≤z . Then, with the help of the residuum theorem, we obtain: 
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Next, we replace m with −m in Eq. (A.5), and compare the result with Eqs. (3.15), (3.16) and 

(A.6). Thus we find: 

),,(),,( YmnAmnI τα =−         (A.9) 

The combination of Eqs. (A8) and (A.9) yields Eq. (3.17) in the main text. Further, in Eq. (A.8) 

we introduce the variables 1−= αβ  and zt β= . Using the binomial expansion, we derive: 
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Finally, we carry out the differentiation in Eq. (A.10), and obtain Eq. (3.19).  
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Appendix B. Asymptotics of G, SA and SB 

From Eq. (3.19) is follows: 
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For n ≤ m, the minimal possible power of β, in the right-hand side of eq. (B.1), corresponds to 

the maximal value of k, which is k = n. Then, for β << 1, the leading term in Eq. (B.1) is: 
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For n > m, the maximal value of k is k = m, and then the minimal possible power of β in Eq. 

(B.1) is mmn ββ <<−2 . Hence, the leading term in the asymptotics of Eq. (B.1) is that given by 

Eq. (B.2).  

For βY ≡ exp(−τY) ≈ rY/L << 1, the general term in the sum in Eq. (4.6) can be presented 

in the form: 
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The substitution of Eqs. (B.2) and (B.3) into Eq. (4.6) leads to the asymptotic expression for G, 

Eq. (4.10). 

 What concerns the asymptotics of SA and SB for L→∞, we could not find a general 

analytical derivation, like that for G above. For this reason, we expanded Eq. (4.5) in series for 

βY << 1 by means of a computer program for mathematical transformations, ‘Mathematica 3.0’ 

(Wolfram Research Inc.). In this way, we established the validity of Eqs. (4.8) and (4.9) for mA 

and mB taking any of the values 1, 2, 3, 4 and 5.  
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