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Formal aspects of the project 
 
 
After finalisation of all formal procedures for establishing the project “EMMA” – Emulsions with 
Nanoparticles for new Materials, the project started on October 20, 2003. The project is run by 
three partners – the Institute of Fluid Mechanics and Heat Transfer (ISW) of Graz University of 
Technology, Graz (Austria), the Laboratory of Chemical Physics and Engineering (LCPE) of the 
University of Sofia (Bulgaria), and the Department of Mechanics and Physics of Fluids (DMPF) of 
the Polish Academy of Sciences, Warsaw (Poland).  
 
The kick-off meeting took place at the LCPE in Sofia between Friday, October 31 and Sunday, 
November 2, 2003. In this meeting, all partners presented their institutions and fields of work. 
Specific presentations related to the EMMA project were also given by all three partners, where the 
group from LCPE presented very interesting results of preliminary investigations in the field of 
emulsification in the presence of surfactants at various concentrations. The essential question there 
is the population of drops of the disperse phase and its change due to the emulsification process. 
 
The partners agreed upon having a second meeting for mid-term reporting in October 2004 in 
Warsaw (Poland). In between the PhD student Slavka Tcholakova from LCPE made a visit to the 
DMPF in Warsaw for experiments in the field of emulsification in a narrow-gap emulsifier, and a 
visit of Prof. K. Danov from LCPE to ISW in Graz is planned for the week between December 4 
and 10, 2004. 
 
 
 
1 Computed flow configuration - geometry 
 
According to the geometry data provided by Mrs. Slavka Tcholakova the key part of the emulsifier 
was constructed as shown in Figure 1. The total axial extension of the computational domain is 
L=0.5 m. The diameter at the inlet is D=0.013 m. 

 
Figure 1: Configuration of the emulsifier. 
 
As it is shown by the cross-sectional view in Figure 2, the processing element's base plate 
containing six inlet holes exhibits 12 axes of symmetry with respect to the circumferential direction 
θ. Therefore, the present three-dimensional simulation considered a flow geometry bounded by two 
neighbouring axes of symmetry. As marked by the shaded slice in Figure 2, the computed flow 
domain has a circumferential extension of  ∆θ =30°. 
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Figure 2: Cross section A-A  of the base plate as denoted in Figure 1. The extension of the 
computational domain in the circumferential direction  is ∆θ =30°.  
 
 
Figures 3 and 4 display different views of the flow geometry next to the processing element. The 
gap width is 395 µm. 
 

 
 
Figure 3: Processing element, gap width 395 µm. 
 

 
 
Figure 4: Processing element, gap width 395 µm. 
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2 Parameters for the numerical simulation 
 
The three-dimensional numerical calculations were done with Fluent 6.1.22. For  comparison three 
different k-ε models (Standard, RNG, Realizable) with enhanced wall treatment were used as 
turbulence models. Applying the alternative turbulence models did not produce significantly 
different solutions, as it will be shown in the numerical results.  
 
For the material properties of the working fluid we used the corresponding data of the emulsion, 
which read  ρ= 977.6 kg/m3 and µ= 2.5⋅10-3 Pa s, respectively. The volumetric flow rate through 
the emulsifier was set to V& = 0.13⋅10-3m3/s. 
 

 
2.1 Boundary conditions 
 
The boundary conditions which were imposed at the different boundary zones shown in Figure 5 
are summarized in Table 1. 
 

 
velocity-inlet 

 
inlet velocity: top-hat profile with the axial 

velocity vx =0.979 m/s and 
turbulence intensity 10%, 

the corresponding Reynolds number 
based on the diameter at the inlet D=0.013 m is 

Re = vx D ρ/µ=4979 
 

 
pressure-outlet 

 

 
von Neumann condition for velocity 

 
channel wall 

surface of processing element 
 

 
no slip condition 
no slip condition 

 
planar side boundaries 

 
symmetry 

 
 

Table 1: Boundary conditions. 
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Figure 5: Boundary conditions. At the side boundaries of the domain, i.e., at  θ =0° and θ = 30°, 
respectively, the symmetry condition with respect to the circumferential direction θ was imposed. 
 
 
2.2 Numerical scheme 
 
The governing set of equations was numerically solved using the following solvers for the pressure 
field and discretization schemes: 
 
 
Pressure Standard 
Pressure-Velocity Coupling SIMPLE 
Momentum First Order Upwind (Standard, RNG), 

Second Order Upwind (Realizable) 
Turbulent Kinetic Energy First Order Upwind (Standard, RNG), 

Second Order Upwind (Realizable) 
Turbulent Dissipation Rate First Order Upwind (Standard, RNG), 

Second Order Upwind (Realizable) 
 
Table 2: Pressure solvers and discretization schemes  
 
 
 
3 Results of the simulation 
 
The presented results in the area of the processing element are organized as follows: 
 
Fig. 6 Velocity-vector plot demonstrating the local direction of the flow particularly in the 

region close to the processing element. 
 

Figs. 7 - 8 Contour plots of the axial velocity and the static pressure at different cross-sectional 
(y-z)-planes downstream from the device. These contour plots are shown to 
illustrate that the flow after passing through the inlet holes of the processing 
element's base plate becomes  again homogeneous in the circumferential direction 
very rapidly. This is due to the strong contraction of the flow as it approaches the 
first narrow gap. Therefore, the flow downstream from the first gap of the 
processing element can be practically regarded as cylindrically symmetric. 

 
Figs. 9 -11 Contour plots of the axial velocity component (streamwise direction), of the 

turbulent kinetic energy, and of the turbulent dissipation rate, respectively. 
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It is noted that all vector and contour plots shown are taken from the solution obtained with the 
standard k-ε turbulence model. They are primarily intended to give a qualitative insight into the 
flow in the region around the processing element. 
 
Figs. 12 - 13 Sketch of the downstream positions for the analysis of the different flow profiles. 
Fig. 14 Velocity profile in the first gap, at the downstream position x=0.413m 
Fig. 15 k profile in the first gap, at the downstream position x=0.413m 
Fig. 16 ε profile in the first gap, at the downstream position x=0.413m 
Fig. 17 k profile, at the downstream position  x=0.4136m 
Fig. 18 ε  profile, at the downstream position  x=0.4136m 
Fig. 19 k profile, at the downstream position  x=0.415m 
Fig. 20 ε profile, at the downstream position  x=0.415m 
Fig. 21 k profile in the second gap, at the downstream position x=0.423m 
Fig. 22 ε profile in the second gap, at the downstream position x=0.423m 
Fig. 23 k profile, at the downstream position  x=0.426m 
Fig. 24 ε profile, at the downstream position  x=0.426m 
 
 
 

 
Figure 6: Velocity vectors colored by velocity magnitude (m/s), at the first gap. 
 
As it is indicated by the strong recirculation zone in the wake of the gap, the backflow is significant 
in this region. 
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Figure 7: Contours of x velocity (m/s). Flow situation between the base plate of the processing 
element and the first gap. 
 
 
It becomes evident that, right after the base plate of the processing element, the flow varies in the 
circumferential direction θ, which is clearly to be expected. However, approaching the first narrow 
gap, the flow recovers quickly its circumferential homogeneity. Hence, the flow downstream from 
the first gap can be regarded as cylindrically symmetric.  

 
 
Figure 8: Contours of static pressure (Pa) at different locations downstream the base plate. 
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As already illustrated by the velocity contours in Figure 7, the recovery of the circumferential 
homogeneity is also shown by the fact that the isobars become concentric lines the closer they are 
to the gap. 
 

 
Figure 9: Contours of velocity component in the axial direction (vx  (m/s)). 
 
The flow is strongly accelerated as it approaches the narrow gaps. Negative values denoted by dark 
blue areas indicate regions with strong backflow downstream from both gaps. The shown results 
are obtained using a standard k-ε turbulence model with enhanced wall treatment. 
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Figure 10: Contours of turbulent kinetic energy k (m2/s2).  
 
The strong shear-induced production of turbulence in the wakes after the rear edges of the gaps 
becomes evident. The turbulent kinetic energy reaches a maximum in these shear layers. 
 

 
Figure 11: Contours of turbulent dissipation rate ε (m2/s3). 
 
The maximum values of dissipation are reached in the regions, where the shear of the flow is 
highest. In order to get an appropriate color code it was necessary to clip the maximum values 
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beyond 1⋅105 (m2/s3) near the backward facing edges of the processing element. The Figures 16, 18, 
20, 22 and 24 will show the profiles for ε at the positions which are marked by the arrows in this 
contour plot. These diagrams will in particular reveal the maximum values of ε which are clipped 
here and appear as white areas. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12: Circumferential position, i.e., θ=15°, of the profiles shown in the Figures 14-24. 

 
Figure 13: Downstream positions of the profiles shown in Figures 14-24. 
 
Figures 12 and 13 show, respectively, the circumferential and downstream positions of the profiles 
shown in the Figures  14-24. In all these diagrams the profiles of the individual flow quantities are 
plotted vs. the wall normal direction shown in Figure 12. 
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Figure 14: Streamwise velocity profiles over the height of the first gap. 
 
The results achieved with the different k-ε turbulence models with enhanced wall treatment  show 
practically no difference. The maximum x-velocity over the gap-height is reached at a point beyond 
the center of the gap. 
 

 
Figure 15: Profiles of the turbulent kinetic energy k over the height of the first gap at x=0.413 m. 
 



 

 

 

13

The results obtained with the individual turbulence models show again no significant differences. 
 

 
Figure 16: Profiles of the turbulent dissipation rate ε inside the first gap at x=0.413m. 
 

 
Figure 17: Profiles of the turbulent kinetic energy k immediately after the first gap at x=0.4136 m. 
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Figure 18: Profiles of the turbulent dissipation rate ε immediately after the first gap at x=0.4136 m. 
 
 

 
Figure 19: Profiles of the turbulent kinetic energy k in the wake after the first gap  at x=0.415m. 
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Figure 20: Profiles of the turbulent dissipation rate ε in the wake after the first gap at x=0.415m. 

 
 
 
Figure 21: Profiles of the turbulent kinetic energy k inside the second gap at x=0.423m. 
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Figure 22: Profiles of the turbulent dissipation rate ε inside the second gap at x=0.423m. 
 

 
 
Figure 23: Profiles of the turbulent kinetic energy k in the wake after the second gap at x=0.426m. 
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Figure 24: Profiles of the turbulent dissipation rate ε in the wake after the second gap at x=0.426m. 
 
 
4 Estimation of the maximum drop-size based on the numerical 
results   
 
Basic studies of droplet break-up in homogeneous and isotropic turbulent flow were first presented 
by Kolmogorov (1949) and Hinze (1955). The main assumption in these studies is that drop 
fragmentation is caused by dynamic pressure forces due to rapid turbulent fluctuations in the 
vicinity of the drops, which overcome the interfacial tension forces. This means that a) only 
velocity fluctuations over a distance close to the drop diameter are capable of causing large 
deformations and b) the turbulent eddies causing the deformation lie within the inertial subrange of 
the turbulent kinetic energy spectrum. Accordingly, an estimate of the maximum stable drop 
diameter dmax can be obtained by equilibrating the inertial and the interfacial tension forces which is 
written as 

 

 

( 1 )

Therein, δu2 denotes the mean-square velocity difference in the continuous phase over a distance 
equal to the drop diameter dmax. Assuming an isotropic and homogeneous flow field and the 
diameter dmax being much greater than the Kolmogorov length η, 
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depending only on the specific energy dissipation rate ε. Substituting eq. (3) into eq. (1) yields for 
the maximum stable drop diameter the relation 

Ccd =







ε

σ
ρ 5/3

5/3

max , 
( 4 )

 
where the constant C=(Wecrit/2)3/5 is given in terms of the critical Weber number Wecrit, which has 
to be determined from experimental data. As a result the maximum stable drop diameter according 
to the Kolmogorov-Hinze theory reads  

ερ
σ

5/25/3

5/35/3

max 2 c

Wecritd 







= . 

( 5 )

 
In wall bounded flows the value for the dissipation rate ε needed in (5) can be roughly 
approximated based on correlations for the friction losses into the downstream direction. In the 
present consideration of the flow through the gap emulsifier the value for the energy dissipation 
rate ε can be obtained from the results of the numerical simulation described in the preceding 
sections. Besides the gain of a detailed insight into the flow field through the considered device the 
simulation was also motivated to provide an estimate for ε,  which represents an essential input 
quantity into the droplet break-up modelling.  Since the maximum stable droplet diameter is 
basically proportional to the inverse of ε,   the region, where the highest dissipation rates are 
achieved,  can be considered to be the relevant zone for the final distribution of the drop-size 
obtained in the outflow of the emulsifier.   
 
  

 
 

                            Gap 1:                                                                              Gap 2: 
Standard    k =2.47 m2/s2                                                     Standard     k =5.52 m2/s2 

                             ε =28022m2/s3                                                                      ε =69217m2/s3 
 
            RNG         k =2.39 m2/s2                                                     RNG           k =5.54 m2/s2 
                             ε =26486.09m2/s3                                                                 ε =68841m2/s3 
 
            Realizable k =2.38 m2/s2                                                    Realizable   k =5.66 m2/s2 
                              ε =27012m2/s3                                                                     ε =72014m2/s3 
Figure 25: Cross-section of the annular gaps (shaded areas) and corresponding volumetric averages. 
 
The numerical results for the present flow configuration show, that the dissipation rate exhibits the 
highest values in the second gap (see Figures 16, 18, 20, 22 and 24). Therefore, the mean 
dissipation rate obtained by averaging the numerical solution over the annular volume of the second 
gap is chosen as an appropriate input value for the estimation of the maximum droplet diameter in 
the present study. Figure 25 shows the cross-section of the annular volumes of the two gaps above 
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the processing element and the averages over the corresponding gap volumes for the dissipation 
rate and the turbulent kinetic energy. It becomes evident again that the alternatively applied 
turbulence models give not significantly different results.  
Concerning the determination of  the critical Weber number Wecrit Karabelas (1978) derived for the 
case of  turbulent continuous phase flow through a cylindrical pipe with diameter D 
the expression 











=

−

µ

ρ

c

u cDc
Wecrit

6/1

9.5 . 
( 6 )

 
Applying this dependence on the bulk flow Reynolds number of the continuous phase, 

µρ ccc Du /Rec = ,  to the present annular gap flow, where the hydraulic diameter Dh=da-di is the 
relevant diameter,  the critical Weber is evaluated as Wecrit = 1.235. Using this value for Wecrit the 
maximum drop-size correlation according to the Kolmogorov-Hinze theory given by eq. (5) is 
rewritten as  

ερ
σ

5/25/3

5/3

max 749.0
c

d = . ( 7 )

 
 
It is noted that the Kolmogorov-Hinze relation (7) is strictly valid only for small differences in the 
molecular viscosities of the continuous and the dispersed phase. Davis (1985), therefore, extended 
this approach to cases, where the viscosity of the dispersed phase is significantly higher than that of 
the continuous phase, by adding a viscous force term, such that   

( )
5/33/1

5/25/3max 4
max2











+=

dK
d d

c

εµ
σ

ερ
. 

( 8 )

 
Deviating from Davis’ original suggestion, who set the constant K in (8) to be unity, the present 
consideration assumes for constant K the same functional dependence on the critical Weber number 
as for the constant C occurring in eq.(4). Setting the constant K = C = 0.748 makes equation (8) 
approach the Kolmogorov-Hinze equation (7), if  the viscosity of the dispersed phase is neglected. 
 
4.1 Comparison with experimental data   
 
The Kolmogorov-Hinze correlation, eq.(7), as well as the extension due to Davis, eq.(8), were 
evaluated for three different test cases which have been investigated by Mrs. Tcholakova at the 
LCPE-Sofia in corresponding experiments with the gap emulsifier. In these experiments with water 
and soybean oil the resulting drop size distributions at the outflow of the device were measured for 
three different interfacial tensions σ. Their numerical values and those of all the other relevant 
parameters – these were in all three cases the same - are listed in Table 3. The continuous phase 
data always refer to the properties of water the dispersed phase data to those of soybean oil. 
 
Case 1 Case 2 Case 3 
σ=10 ⋅10–3 N/m σ=7 ⋅10–3 N/m σ=3.8 ⋅10–3 N/m 
Gap width  395 µm Gap width  395 µm Gap width  395 µm 
V& =0.13 10–3 m3/s V& =0.13 10–3 m3/s V& =0.13 10–3 m3/s 
ρc=998 kg/m3 ρc=998 kg/m3 ρc=998 kg/m3 
µc= 10–3 Pa s µc= 10–3 Pa s µc= 10–3 Pa s 
ρd=920 kg/m3 ρd=920 kg/m3 ρd=920 kg/m3 
µd=50⋅ 10–3 Pa s µd=50⋅ 10–3 Pa s µd=50⋅ 10–3 Pa s 
Table 3: Relevant parameters of the three test cases. 
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The measured drop size spectra for each case are shown as pdf-histograms and cumulated pdfs in 
the Figures 26-28. In the present consideration the maximum experimentally measured stable drop 
size is defined as the diameter which is exceeded by not more than 5% of the sample. It is denoted 
in the following by d95.  

 

 
Figure 26: Case1, σ=10 ⋅10–3 N/m, d95=9.05 µm. 

 

Figure 27: Case2, σ=7 ⋅10–3 N/m, d95=6.33 µm. 
 

 

Figure 28: Case3, σ=3.8 ⋅10–3 N/m, d95= 5.17 µm. 
 
The theoretical estimates, given by eq.(7) and eq.(8), respectively, use the dissipation rate field 
provided by the numerical simulation as input. For all three cases the solution obtained with the k- ε 
model is used to compute the volumetric average value in the second gap, ε  = 69217[m2/s3], as 
shown in Figure 25. 
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The maximum drop sizes estimated with the two considered correlations are listed in Table 4 and 
compared with the corresponding experimental values d95. 
 
 Case 1 Case 2 Case 3 
Kolmogorov-Hinze, 
eq.(7),  dmax [µm] 

8.68  7.01  4.86  

Davis, eq.(8),  
dmax [µm] 

16.24  15.01  13.6  

Experiments, d95 [µm]            9.05  6.33  5.17  
Table 4: Estimated  maximum drop sizes and experimental data. 

 
 
The Kolmogorov-Hinze correlation shows an unexpectedly good agreement with  the experiments, 
although it completely neglects the large difference in the viscosity of the two phases ( µµ cd 50= ).  
In contrast, the model extension proposed by Davis shows considerable over-predictions. The 
viscous term which is introduced on the RHS of eq.(8) appears to overestimate the effect of the 
viscous forces on the droplet break-up in the present cases.  
 
 
 
5 Discussion and further work 
 
The individual flow profiles obtained at the different downstream locations  reveal that the 
turbulent kinetic energy is considerably low inside the first gap (Fig. 15). The maximum local 
turbulence intensity ukT /)3/2(= , with u  being the magnitude of the local average velocity, is 
about 8 % there. The turbulent kinetic energy is strongly increased in the wake after the first gap 
due to the high shear-induced production leading to a peak value of k in the shear layer formed 
downstream from the backward facing edge (Fig. 19). Some part of the turbulence produced in this 
first wake zone is convected downstream into the second gap, and, hence, in comparison to the first 
gap a more than double maximum turbulence intensity (T≈20%) is achieved there (Fig. 21). In the 
wake further downstream, the turbulent kinetic energy is increased again in the shear layer after the 
rear face of the processing element. About the same peak values of k are achieved as in the first 
wake (Fig. 23). Similar to the turbulent kinetic energy, the dissipation rate ε occurring in the wakes 
after the gaps varies strongly with the wall normal direction. As shown in Figs. 20 and 24, ε 
exhibits a peak in the upper shear layer after the rear edges of the gaps.  
It is noted that the numerical results obtained with the alternatively applied turbulence models show 
all the same tendencies. Quantitatively, the results do not differ significantly, either. 
Moreover, the present simulation makes particularly evident that the turbulent kinetic energy as 
well as the turbulent dissipation rate are considerably increased from gap to gap. As shown in 
Figure 25 the dissipation rate averaged over the volume of the second gap exceeds significantly the 
corresponding value of the first gap. It can be expected that up to some limit a higher number of 
gaps followed by wakes will basically produce a strongly enhanced average turbulence and 
dissipation in the gap farthest downstream. Since the magnitude of the dissipation is essential for 
the droplet break-up mechanism according to the emulsification theory, the observed gap-to-gap 
increase of the achievable mean dissipation rate has to be considered in the determination of the 
optimum number of gaps of the processing element.  
The estimation of the maximum drop size using the average dissipation rate evaluated with the 
numerical results in the second gap gave a surprisingly good agreement with experimental data for 
the simplest droplet-break-up model. Applying on the other hand a basically more advanced model, 
which also accounts for the viscous forces within the dispersed phase produced considerable over-
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predictions. The agreement/disagreement of the estimates should not be misinterpreted in terms of 
the predictive capability of the applied models. Both approaches are strictly valid only for isotropic 
homogeneous turbulence, which is not the case in the considered flow through the narrow gaps 
being highly sheared and subject to strong wall effects. Additionally, in the light of the 
considerable spatial variations of the dissipation rate ε over the gap height, as shown in Figure 22, 
there is also some arbitrariness in the actual choice of the volumetric average value as an 
appropriate input into the model correlations. From this point of view the good agreement obtained 
with the simple model could be rather fortuitous.   
It is finally noted that the drawn conclusions are basically made just for the present case with the 
two-gap-emulsifier. The sensitivity of the achievable dissipation rates to the gap width as well as to 
the number of gaps has certainly to be investigated in further simulations, varying the number of 
gaps as well as the gap width. These simulations will be carried out for the new designed planar 
emulsifier, where a series of computationally less costly two-dimensional computations might be 
possible. 
 
 
6 Emulsification by liquid jet break-up in another viscous fluid 
 
One technique which may be applied for forming emulsions is to form the drops of the disperse 
phase by break-up of a liquid jet immersed in the carrier fluid. The process that leads to the 
formation of drops is the instability of the jet against axisymmetric disturbances. The linear 
analyses of the stability of the viscous jet in another liquid of different viscosity and density 
presented by Tomotika (1935) and by Meister and  Scheele (1967) are the basis for the present 
investigations.  
 
Tomotika was the first to present a linear stability analysis of a viscous jet immersed in another 
viscous fluid. He starts his analysis from the conservation equations of mass and momentum for 
incompressible Newtonian fluids in cylindrical coordinates. Body forces are not considered in the 
momentum equations. The equations read 
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When the stream function ψ is introduced according to the definitions of the velocity components u 
and w in the radial and the axial (z) directions, respectively, which read 
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−= , 

the continuity equation is satisfied automatically, and the momentum equations remain as two 
differential equations for the pressure and the stream function. Eliminating the pressure from these 
two equations leads to the final differential equation for the stream function 
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Assuming that the velocities occurring in this equation are small, such that their products and 
products with their derivatives are small of second order and may be neglected, Tomotika arrives at 
the final equation 
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for the stream function of the problem. This equation is valid for both the fluid inside the liquid jet, 
and for the surrounding carrier fluid.  Solutions of the equation may be the solutions ψ1 and ψ2 of 
the equations  

0Dψ1 =    and 0
t
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ν
1Dψ 2

2 =
∂

∂
−   . 

In order to obtain wavelike solutions with a possibility to describe the temporal instability of the 
system, we make the ansatz 

( ) ( )kzti
ii er +⋅= ωφψ   for i=1, 2, 

where the amplitude function φi depends on the radial coordinate only and is to be determined by 
solving the respective differential equations. Introducing this formulation of ψi into the two 
differential equations for ψ1 and ψ2, we obtain the two solutions for the amplitude functions  

)()( 11111 krrKBkrrIA +=φ  and 
)()( 12122 lrrKBlrrIA +=φ   , 

where l2=k2+iω/ν. The general solution of Tomotika’s final differential equation is the sum of the 
two functions resulting from the separate solutions for φi and the exponential function for the 
dependencies on t and z, i.e.  

[ ] [ ]{ } ( )kztielrrKBlrrIAkrrKBkrrIA +⋅+++=+= ωψψψ )()()()( 1212111121   . 
In this solution, which corresponds to Tomotika’s final differential equation, one should keep in 
mind that no relative motion of the jet and the carrier fluids is assumed. The solution is therefore to 
be considered with care when deriving conclusions from them on the instability behaviour of 
liquids in processes like emulsification. 
 
The general solution ψ of Tomotika’s final differential equation is to be specialized for treating the 
inner and outer fluids, i.e. the jet and the carrier fluids, respectively. This is due to the fact that the 
modified Bessel functions occurring in the general solution tend to diverge either at zero or at 
infinite values of their arguments. The functions I diverge at infinity, the functions K at zero value 
of their arguments. These functions must therefore be excluded from the solutions for the outer and 
inner fluids, respectively. Denoting the solution for the inner fluid with a prime, we obtain 

[ ] ( )kztierlrIAkrrIA +⋅′+=′ ωψ )()( 1211 ,  where l´2 = k2+iω/ν´, and 
[ ] ( )kztielrrKBkrrKB +⋅+ ωψ )()( 1211 ,  where l2=k2+iω/ν. 

 
These solutions are to be adapted to dynamic boundary conditions, which link the two fluids 
together. The conditions ensure that there is no slip at the interface (i.e. the velocity components u 
and w at the jet surface are the same for the two fluids), that the tangential stress is continuous 
across the interface, i.e. that 
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and that the radial stress across the interface differs due to the surface tension, i.e. that  
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In the condition on the radial stress, the quantity ξ is the radial displacement, which is given by the 
equation ξ=ψ´|r=a ⋅k/(ωa).  
 
These boundary conditions establish four equations for the four unknown coefficients A1, A2, B1 
and B2. The system of equations is homogeneous in the coefficients. A non-trivial solution 
therefore exists only in the case that the coefficient determinant of the system vanishes. This leads 
to the solution of the problem in the form of the dispersion relation of the system, which, in contrast 
to the corresponding relations for the inviscid jet by Rayleigh and the viscous jet by Weber, is a 
determinantal equation. The dispersion relation reads 
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where the functions F1 through F4 are given by the expressions 
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Primes at the modified Bessel functions I and K indicate the derivative of the function with respect 
to its argument.  
 
A further specialisation of the solution is now introduced in order to treat low flow velocities. This 
case is identified with negligible inertia of the two fluids, which corresponds to the case that the 
two densities ρ´ and ρ vanish. In the limit of this case, we obtain a new form of the above 
determinant, which reads  
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where the functions G1, G2 and G4 read 
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The determinant can now be further simplified for the limiting cases that the viscosity ratio µ´/µ of 
the inner and outer fluids is very large or very small, i.e. for the cases of a viscous liquid jet in a gas 
and of a gas jet in a liquid. For a very large value of the viscosity ratio, the result obtained 
converges to the result of Rayleigh (1892). The case that the viscosity ratio is very small yields a 
similar result, but characterised by the functions K0 and K1 instead of I0 and I1.  
 
In the case that the viscosity ratio of the two fluids involved in the flow exhibits an intermediate 
value, the full determinant containing the functions Gi must be evaluated. For a special case of a 
lubrication oil injected into a syrup, which exhibits the value µ´/µ = 0.91, Taylor made experiments 
which may be considered in the light of the above theory. For this viscosity ratio, the above 
determinantal dispersion relation yields the maximum growth rate at the optimum wave number 
ka|opt = 0.568. This is equivalent to the wavelength λopt=5.53⋅2a. In Taylor’s experiments, the jet 
exhibited a radius of a=0.272mm, and the inter-droplet distance in the region where the jet had 
broken down was 3.452mm. This is equivalent to a non-dimensional wave number of 
ka=2πa/λ=0.5, which may be identified with the wave number of the fastest growing wave, since 
no control of the jet break-up was used to influence the disturbance wavelength. This experimental 
result may therefore be directly compared to the value of 0.568 from the theoretical prediction. The 
deviation is 13.6%, which is a relatively high value. One reason for this slight discrepancy may be 
seen in the fact that the theory does not account for the relative motion of the two fluids with a 
finite relative velocity, and in the simplification to disregard fluid inertia. 
 
A more general description of the process was given by Meister and Scheele, who incorporated the 
relative motion in the theory. This theory will be transcribed into a form for use in the presently 
relevant work on liquid emulsification by means of jet injection into another liquid. 
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