Annex 3

Production of emulsions in shear flow
experimental and numerical study

Break-up of liquid jet in co-flow
experimental study

Institute of Fundamental Technological Research
Polish Academy of Sciences
Swietokrzyska 21, 00-049 Warsaw, Poland

Piotr Korczyk, M.Sc.
Prof. Tomasz A. Kowalewski, Ph.D., D.Sc.

Warsaw, October 2005
Contents:

1. Flow structure investigation in the vicinity of the processing element by Particle Image Velocimetry (PIV) ... 9
2. Visualization of droplets breakup process and emulsion flow in the vicinity of the processing element... 17
3. Visualization of liquid jet break-up and droplet formation for co-flow 25
4. Numerical simulation of the flow through the planar emulsifier 27
5. Publications list ... 46
6. Summary and conclusions ... 47
Introduction

Two experimental cases are investigated. In the first one the breakup of oil droplets is studied in a shear flow. In the second case the capillary instability and generation of droplets is studied for liquid jet in co-flow of other immiscible liquid. The purpose of the investigations is to develop procedure for well-controlled generation of mono-dispersed suspension of micro droplets. These droplets will form a matrix for collection of nano-particles into well-structured configuration. In both experimental studies similar experimental setup and fluids are used.

The main part of the apparatus consists of microscope, channel with transparent windows, light source and digital camera. The shear flow dispersion of oil in water is studied for single processor emulsifier constructed by University of Sophia. The process is investigated experimentally and numerically to elucidate conditions for oil droplets break-up. The flat 2-D emulsifier is constructed to ease optical access, hence to permit application of optical methods for measuring flow velocity field (PIV method) and to visualize emulsion droplets. It is a two dimensional replica of the central cross-section of cylindrical emulsifier used in Sophia. Two slightly different versions of the plain emulsifier processing part are used. The main difference is in the length of a gap (comp. Fig. 1), being 1 mm or 2 mm. The 2mm long gap has transparent section made of Plexiglas to permit back light illumination, necessary for droplet observations within the gap. In the following results are given for the geometry with 1mm long gap (G1) and with 2mm long gap (G2).

The jet breakup is studied in the rectangular cavity with two glass windows and cylindrical inlet and outlet channels. The carrier fluid (water or water alcohol mixture) is forced through the channel using precision stroke pump. The inlet opening is equipped with a 0.8mm syringe needle, to deliver in a concentric way oil into the flow system. For details comp. Fig. 2.

The jet breakup is studied in the rectangular cavity with two glass windows and cylindrical inlet and outlet channels. The carrier fluid (water or water alcohol mixture) is forced through the channel using precision stroke pump. The inlet opening is equipped with a 0.8mm syringe needle, to deliver in a concentric way oil into the flow system. For details comp. Fig. 2.

Figure 1. Geometry of the processing element for two-dimensional emulsifier; (G1) – 1mm gap length, (G2) – 2mm gap length, processing element with the transparent widow. The gap height and width is 0.4mm and 15mm, respectively.

Figure 2. Scheme of the channel for jet break-up observation (geometry G3). Oil jet is issued from the needle into co-flow of water-alcohol solution. Channel length 30 mm, height 8mm, and width 10 mm. The co-flow inlet diameter is 3mm. The needle external and internal diameter is 0.8mm and 0.5mm, respectively. The flow is illuminated through the bottom glass wall and observed through the upper glass wall.
The study aims to elucidate following problems:

I. Flow structure in the vicinity of the processing element. Experimental measurements of the instantaneous and average velocity fields for water flow at volumetric rates: \(Q_1 = 0.13 \text{L/s} \) and \(Q_2 = 0.204 \text{L/s} \) using processing element G1.

II. Visualization of droplets breakup and emulsion flow in the vicinity of the processing element for the flow rates \(Q_1 \) and \(Q_2 \) using processing element G2. Emulsions are prepared using de-ionized water with 10mM NaCl, without surfactant or with 1%wt anionic surfactant sodium dodecyl sulfate (SDS). Two different silicone oils are used to change the droplet phase viscosity: S50 (50mPas) and S500 (500mPas). The flow rate is \(Q_2 = 0.204 \text{L/s} \).

III. Visualization of liquid jet breakup and droplet formation for co-flow in the geometry G3. The carrier flow rates \(Q_e \) and the jet flow rate \(Q_j \) are varied flow parameters. The carrier fluid is water-alcohol solution with 1%wt anionic surfactant sodium dodecyl sulfate (SDS). Two different silicone oils are used to change the droplet phase viscosity: S50 (50mPas) and S500 (500mPas).

IV. Numerical simulation for the flow of water in the geometry G1 and G2 for the flow rate \(Q_2 \) using direct unsteady simulation and k-e turbulence steady average flow model to reproduce flow structure and turbulence characteristics in the vicinity of the processing element.

Experimental

The experimental setup consists of bottle with pressurized nitrogen and pressure compensation reservoir attached to the supply bottle containing working liquid. The gas pressure is stabilized at selected level using compensation reservoir. Under applied gas pressure liquid is driven through the homogenizer to the collecting bottle. The flow rate is set varying the reservoir pressure and using system of valves. The exact value of the flow rate is obtained by measuring time necessary to fill up a calibrated quantity of the collecting bottle. When emulsion is used, the experiment is repeated several times by pouring liquid from the collecting bottle back to the supply bottle using a by-pass tube. The experiment with the emulsion starts after “hand-shaking” of water-oil mixture prepared in the supply bottle. Usually 5 to 10 passes are used to record development of the emulsion in the vicinity of the processing element.

Due to small scales of investigated objects the flow is examined under a microscope. Nikon epi-fluorescence (Eclipse50i) microscope equipped with four far field lenses: 4x/NA0.13/WD17.1mm, 10x/NA0.3/WD17.30mm, 20x/NA0.35/WD24mm, and 50x/NA0.45/WD17mm is used to obtain different magnification ratios. Flow observed under the microscope reveals large relative displacements and application of high speed recording techniques is essential. At the highest magnification ratio the 1280 pixels image width corresponds to 0.172mm, and for the flow velocity of 1m/s the illumination time necessary to freeze images must be less than 100ns. Such short illumination time can be achieved using pulsed laser light only.

Three different light sources are used: (i) built-in microscope halogen lamp with condenser for backlight illumination; (ii) CW 5W Argon laser (496nm+515nm) for epi-fluorescence and flow visualization; (iii) Nd:Yag 30mJ (532nm) double pulsed laser used for epi-fluorescence flow velocity measurements (PIV) and as a 5ns short backlight illumination for emulsion imaging.
Two high resolution (1280x1024 pixels), 12bit cameras are used for the flow study. The PCO SensiCam is used for short exposure imaging. The camera coupled with the double pulse laser permits acquisition of two images at the time interval 200ns and exposition time of 5ns. However, the pairs of images can be registered at about 3.75Hz only. For high-speed flow visualization the second camera PCO1200HS is used. This camera permits recording full resolution images (1280x1024 pixels) at 636fps, and at over 40kfps for decreased vertical image resolution. An electronic shutter of the camera allows to freeze relatively high-speed motion, however on costs of overall light intensity. Therefore, using continuous illumination (halogen lamp, Argon laser) the shortest viable illumination time using this camera appeared to be 1ms.

Ad. I Flow structure measurements

The microflow measurements are based on epifluorescence illumination and high speed imaging, allowing to collect detailed data on turbulent shear stresses in the flow, necessary for modeling the emulsification process. The flow structure study is based on micro-PIV technique, permitting measurements of instantaneous two-dimensional velocity fields for selected sections of the channel. The experimental setup consists of the experimental emulsifier cell, epifluorescence microscope, high-resolution PIV camera, double pulse Nd:YAG laser (5ns pulse) and pressure system for flow acceleration. Flow structure is measured in a simple model of shear flow induced emulsifier. It consists of a small channel formed between two glass plates separated by a triangular obstacle (Figure 1). Water is pumped under pressure through a small slit between the obstacle and sidewalls of the channel. Observations of the flow can be performed through a transparent top or bottom wall. Flow in the vicinity of the channel center defined by the vertical symmetry plane is analyzed. The PIV velocity measurements are performed using seeding of fluorescent polystyrene spheres, 2µm in diameter, purchased from Duke Scientific Inc. The particle density is very low (<0.0001%wt), hence they do not affect the flow structure. Particle Image Velocimetry (PIV) based on correlation of pairs of images is used to evaluate instantaneous velocity field in the channel. These full field data allow for evaluation of local velocity gradients, hence for estimation of conditions for the droplet break-up.

Unlike typical PIV methods, micro-PIV does not utilize a thin laser sheet to illuminate the seeding particles. Instead, the whole investigated volume is flooded with the laser light using beam expander and the microscope objective (Fig. 3). Once the particles are exposed to the 532nm (green) light from the laser, they emit red light with an emission maximum at 612nm, as specified by the supplier. The amount of time in which particles continue to fluoresce after the laser pulse is on the order of nanoseconds, so motion induced blurring of the particles does not occur in the PIV images. Two low pass filters mounted between the objective and camera permit only the fluorescent red light to pass, while preventing the green laser light to be detected by the camera. Hence, the PIV images present well detectable bright spots of seeding particles. Only particles being within depth of focus are recorded. Particles out of focus add background noise limiting applicability of the technique to thin fluid layers (max. 10-15mm). The flow is observed through the upper window. By traversing the field of observation in the horizontal and vertical direction, the position of the interrogated flow plane is selected. The vertical resolution depends on the depth of field of the objective. In the micro-PIV experiments performed using 10x objective the vertical resolution is estimated to be 10µm. The horizontal resolution of the velocity field measurements for this objective is 0.5µm. The accuracy of the velocity measurement depends on several experimental factors (quality of images, seeding concentration, particle displacement), as well on the vector
evaluation procedure. Using in house developed software the error of velocity measurement is estimated to be below 5%.

![Scheme of the micro-PIV experimental setup](image)

Figure 3. Scheme of the micro-PIV experimental setup

Ad. II Visualization of droplets breakup in emulsifier

The break-up of droplets under high-speed flow conditions is visualized using experimental setup analogue to the one described above. It consists of the experimental emulsifier cell, high-resolution PIV camera (Sensicam), double pulse Nd:YAG laser (5ns pulse) and pressure system for flow acceleration. The bright field illumination is used to visualize droplets shape in emulsion passing through the channel. The experiments of emulsion visualization are performed in the geometry G2, with a small (4mm) Plexiglas window implemented in the center part of the processing element (Fig. 1b). It permits backlight illumination of the gap region. The illumination system uses laser light reflected by a diffuser. The laser light pulses are passed through the backlight illumination system of the microscope with a built-in condenser. After passing the investigated channel the laser light is guided through the microscope objective to the camera. The system is used to record pairs of images at time intervals from 200ns to 1ms at 3.5Hz repetition rate. The illumination time of 5ns is set by the laser pulse duration. It allows to obtain sharp images of droplets at the highest flow rates used in the study. However, due to the coherent structure of the laser light unavoidable speckle overlay is present in the images. Most of the experiments with emulsion are carried out at flow rate $Q = 0.204$ L/s and several series of experiments are performed at lower flow rate, $Q = 0.13$ L/s, to study the effect of the Reynolds number on the drop break-up.

Ad. III Visualization of liquid jet instability and droplet formation in co-flow

The liquid jet break-up is commonly used method for dispersing liquids jets in air. The present study is intended to obtain dispersions of small droplets in other liquid. In the experimental arrangement, the jet is issued from the 0.8mm needle (0.5mm internal diameter)
inserted into the channel described above as geometry G3. The images of the jet are registered by a high-speed camera (PCO 1200HS) at 500 frames/s. The camera electronic shutter is set to 0.1ms to obtain sharp images of the jet and droplets. The standard halogen illumination system of the microscope is used for backlight illumination. Image processing software is used to improve the quality of the images as well as to measure dimensions.

Ad. IV Numerical simulation

Both turbulent and laminar flow models have been applied using Fluent 6.2 solver. Details on the numerical procedure and investigated geometry are given together with the description of results in Part 4 of the report.

Photos of the experimental set-up

Figure 4. Photo of the experimental setup for micro PIV technique measurements and drops break-up process investigation, made up of Nikon Eclipse50i microscope, PCO1200hs high speed camera (for drops observation; for PIV measurements was used other camera: PCO Sensicam), pressure system for flow acceleration and PC computer for data acquisition.

Figure 5. Photo of the experimental setup for investigation of jet break-up process; pressure system replaced with two precision syringe pumps
Figure 6. Photo of the emulsifier model under microscope.

Figure 7. Photos of the transparent processing element.

Figure 8. Photo of experimental chamber for investigation of break-up process of liquid jet in co-flow

Figure 9. Photo of experimental chamber for investigation of break-up process of liquid jet in co-flow under microscope.
1. Flow structure investigation in the vicinity of the processing element by Particle Image Velocimetry (PIV)

1.1 Experimental setup

All measurements in this part were taken for geometry G1 (length of gap 1mm), and flow rate \(Q_1 = 0.13 \text{L/s} \).

PIV technique gives ability to measure velocity field by use of optical non-intrusive methods. In the case of this experiment pairs of microscopic images of flow were collected and than processed to retrieve field of velocity on the plane of image. Images were taken in the horizontal plane, so only horizontal components of velocity field could be obtained without any information about vertical component.

Figure 1.1 shows geometry of the experimental domain. Axes \(x \) and \(z \) lies on horizontal plane. Axis \(y \) is consist with the vertical direction. Axis \(x \) starts at the end of processing element, axis \(y \) at the interface between glass and interior of emulsifier. Axis \(z \) starts at the center of the emulsifier.

Five profiles of velocities were obtained from the PIV measurements. Each of them in different location (see Figure 1.1 and Table 1.1).

![Figure 1.1 Schematic view of the emulsifier with coordinates system and positions of profiles P (z component is orthogonal to the plane of image). Note that point (0,0,0) is placed at the end of processing element for x direction, the interface glass/fluid for y direction, center of the emulsifier for z direction.](image)

<table>
<thead>
<tr>
<th>Profile</th>
<th>(X \text{ [mm]})</th>
<th>(Y \text{ [mm]})</th>
<th>(Z \text{ [mm]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>From (-1.45) to (-0.7)</td>
<td>(-0.2)</td>
<td>0</td>
</tr>
<tr>
<td>P2</td>
<td>From (-0.35) to (0.35)</td>
<td>(-0.2)</td>
<td>0</td>
</tr>
<tr>
<td>P3</td>
<td>1</td>
<td>From 0 to (-3.75)</td>
<td>0</td>
</tr>
<tr>
<td>P4</td>
<td>3</td>
<td>From 0 to (-3.75)</td>
<td>0</td>
</tr>
<tr>
<td>P5</td>
<td>8</td>
<td>From 0 to (-3.75)</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1.1 Positions of measurements for profiles
1.2 Horizontal profiles P1 and P2

In the case of profile P1, images were centered nearly position $x=-0.5\text{mm}$, $y=-0.2\text{mm}$, $z=0$, what corresponds to the beginning of the gap in the x-direction and 0.2mm below glass in the y-direction.

![Figure 1.2](image1.png)

Figure 1.2 Profile P1. Left: velocity field (width of image corresponds to about 0.7mm). Right: V_x velocity for various x (obtained by averaging of velocity field along y axis), position $x=-1$ corresponds to the beginning of the gap.

In the case of profile P2, field of view was centered nearly position $x=0.0\text{mm}$, $y=-0.2\text{mm}$, $z=0$, what corresponds to the end of the gap in the x-direction and 0.2mm below glass in the y-direction.

![Figure 1.3](image2.png)

Figure 1.3 Profile P2. Left: velocity field (width of image corresponds to about 0.7mm). Right: V_x velocity for various x (obtained by averaging of velocity field along y axis), position $x=0$ corresponds to the end of the gap.

One can see a rising of V_x component of velocity before the gap (see Figure 1.2) and it's decreasing behind the processing element of emulsifier (see Figure 1.3). For profiles P1 and P2 a velocity field was measured about a few hundred times. Any fluctuations of the velocity field in time were not observed. Flow seems to be steady.
1.3 Flow behind the processing element

<table>
<thead>
<tr>
<th>Velocity field</th>
<th>Field of fluctuations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mm behind the processing element</td>
<td>1mm behind the processing element</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocity field</th>
<th>Field of fluctuations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm behind the processing element</td>
<td>3 mm behind the processing element</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocity field</th>
<th>Field of fluctuations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mm behind the processing element</td>
<td>8 mm behind the processing element</td>
</tr>
</tbody>
</table>

Figure 1.4 Examples of maps of horizontal components of velocity for different distance from processing element ($x=1\text{mm}$, $x=3\text{mm}$, $x=8\text{mm}$). For each of velocity map the field of fluctuations of velocity is shown on the right side. Magnitude of vectors is visualized by colors (see color bars). Width of image is about 0.7 mm in real space. The measurements were taken for $y=-0.3\text{mm}$ (0.3mm below glass).
Time-fluctuations of velocity appear behind processing element. Figure 1.4 shows examples of velocity field for three different x positions ($x=1\text{mm}$, $x=3\text{mm}$, $x=8\text{mm}$) and the same y position ($y=-0.3\text{mm}$). Flow consists of vortices and shear regions – structures characteristic for turbulence.

1.4 Profiles P3, P4, P5

For three positions behind processing element (P3 - 1mm, P4 - 3mm, P5 - 8mm) profiles of horizontal velocity components (V_x, V_z) along the vertical direction (y axis) were calculated. Level in y direction was set by changing distance between emulsifier and microscopic lens. Position in y was changed from $y=0$ (surface of glass) to $y=-3.75$ (center of emulsifier). On the each level the mean value of velocity was calculated by averaging in time. $\langle V_x \rangle$ is the mean velocity for V_x, and $\langle V_z \rangle$ for V_z. The fluctuations V'_x and V'_z are obtained from relations:

\[
V_x = \langle V_x \rangle + V'_x \\
V_z = \langle V_z \rangle + V'_z
\]

Fig. 1.5 shows relations between $\langle V_x \rangle$ and y for profiles P3, P4 and P5. It is shown also relation between tk_{xz} in function of y.

\[
\text{tk}_{xz} = \langle V'_x \rangle^2 + \langle V'_z \rangle^2
\]

It is the part of TKE (mean turbulent kinetic energy), which comes from horizontal components of velocities where $\text{TKE}=0.5(\langle V'_x \rangle^2 + \langle V'_z \rangle^2 + \langle V'_y \rangle^2)$.

![Figure 1.5](image-url)

Figure 1.5 Profiles P3, P4, P5. $\langle V_x \rangle$ for various y and $\text{tk}_{xz} = \langle V'_x \rangle^2 + \langle V'_z \rangle^2$ as a function of y.

Profiles of tke_{xz} implies that turbulence appears after the gap and develops along x direction.

Profiles of $\langle V_x \rangle$ and $\langle V_z \rangle$ along y shows that the vector of horizontal components of velocities changes direction along y and forms something like spiral, but it should be remind that vectors of velocities retrieved from PIV measurements consist of only two components of velocities. They are projections of 3D vectors on the horizontal plane, so real vectors may formed different shapes. Appearance of $\langle V_z \rangle$ shows that probably measurements were taken not exactly at the center of the emulsifier (not for $z=0$).

1.5 Structure functions for the turbulent flow behind the gap

For turbulent flow behind processing element the structure functions was calculated. The second order transverse structure function is a mean square increment of velocity component perpendicular to the line of separation l. For V_x and V_z it is defined as:

$$S_{x\perp}(l) = < [V_x(x,z+l) - V_x(x,z)]^2 >$$
$$S_{z\perp}(l) = < [V_x(x+l,z) - V_x(x,z)]^2 >$$

Figure 1.6 Profiles P3, P4, P5. $\langle V_x \rangle$ and $\langle V_z \rangle$ for various y.

Profiles of $\langle V_x \rangle$ and $\langle V_z \rangle$ along y shows that the vector of horizontal components of velocities changes direction along y and forms something like spiral, but it should be remind that vectors of velocities retrieved from PIV measurements consist of only two components of velocities. They are projections of 3D vectors on the horizontal plane, so real vectors may formed different shapes. Appearance of $\langle V_z \rangle$ shows that probably measurements were taken not exactly at the center of the emulsifier (not for $z=0$).
The second order longitudinal structure function is a mean square increment of velocity between two points separated by l, projected onto the line of separation. For V_x and V_z it is defined as:

$$S_x \parallel (l) = \langle [V_x(x+l,z) - V_x(x,z)]^2 \rangle$$

$$S_z \parallel (l) = \langle [V_z(x,z+l) - V_z(x,z)]^2 \rangle$$

In the case of this experiment the assumption of homogeneity of velocity field on small area of PIV measurement was used. For certain separation l, mean square increments were averaged over whole velocity field obtained from PIV measurements. In this way the curve dependent on separation l was retrieved. Than each curve obtained from different PIV measurements for the same profile and the same level y was averaged.

Figure 1.7 The second order longitudinal structure functions for different level y. Left – profile P3, right – profile P5. Top – structure functions for V_x, bottom – for V_z.
Figure 1.8 The second order transversal structure functions for different level \(y \). Left – profile P3, right – profile P5. Top – structure functions for \(V_x \), bottom – for \(V_z \).

All of graphs on Fig. 1.7 and 1.8 show that increments of \(V_x \) are larger than of \(V_z \). The turbulent structures are anisotropic.

It can be seen that for profile P3 a few curves are higher than the others. It can be infer that for profile P3 (1mm behind the gap) on level \(y = -0.3 \) mm (0.3 mm below the wall) the differences are largest and the region of high increments of velocity is between level \(y = -0.1 \) mm and \(y = -0.5 \) mm.

For the profile P5 (8 mm behind the gap) maximum of velocity increments is also about \(y = -0.3 \) mm but range of levels of high velocity gradients is much larger than in the case of profile P3. Hence there is a trail of high velocity differences that is thin near the end of the gap and than get wider when moves along x direction.

Let focus on the relation between value of structure functions and separation \(l \). Top left graph on the Figure 1.8 shows transversal structure functions of \(V_x \) for profile P3. On the level \(y = -0.3 \) mm (red curve) one can observe fast raising of the curve for small \(l \) but for \(l > 0.15 \) mm curve seems to bee state. Similar behavior can be observe for structure function of \(V_z \). Transversal fluctuations of velocities can be identified with vortices so it can be infer that near the end of the gap the dominant structures of field of velocity are small strong vortices. For the profile P5 it can be shown that there are large eddies which size overdraft a range of the graph (are larger than 0.4 mm).
1.6 Conclusions

Turbulence appears and develops behind the gap. There is a trail of high velocity gradients, which starts near the end of the gap, goes along x-axis and spreads in vertical direction. The maximum of velocity gradients is about 0.3mm below the wall of emulsifier. The character of turbulent velocity field changes along x-axis. Near the end of the gap dominant structures are small vortices. Along x axis larger eddies develop. It suggests that small droplets <0.15 mm are more unstable 1mm behind the gap than 8mm behind processing element. On the other hand droplets >> 0.15 mm are less stable far from the gap than in the vicinity of the end of processing element.
2. Visualization of droplets breakup process and emulsion flow in the vicinity of the processing element.

2.1 Introduction – experimental setup and used materials

Visualization of droplets breakup process was done using planar model of the emulsifier – geometry G2 (fig. 2.1a) with transparent processing element (fig. 2.1b), which allows optical access to the gaps between processing element and glass walls.

![Geometry of the processing element for planar emulsifier: schematic draft (a) and real photo of the transparent processing element (b).](image)

Figure 2.1. Geometry of the processing element for planar emulsifier: schematic draft (a) and real photo of the transparent processing element (b).

Emulsion was prepared using de-ionized water with 10mM NaCl, without surfactant or with 1\%wt anionic surfactant sodium dodecyl sulfate (SDS). Two silicone oil was used to change the droplet phase viscosity: S50 (50mPas) and S500 (500mPas). All experiments was done with flow rate $Q_2 = 0.204 \text{ dm}^3/\text{s}$.

Experiments was done using Nikon Eclipse 50i epi-fluorescent microscope equipped with 20x/NA0.35/WD24mm lens and PCO Sensicam camera. As a light source double pulse Nd:YAG laser (532nm, 30mJ per pulse) was used.

All presented images of the emulsion taken under microscope corresponds to 432µm in width. Two succeeding images of emulsion taken at time interval 1µs or 5µs (1µs – for drops in the gap and 5µs – for other positions in the emulsifier) are used to evaluate instantaneous velocity magnitude of the droplet V_d.

2.2 Results

Figure 2.1 shows schematic view of the part of the emulsifier model in the vicinity of the processing element with defined coordinate system.

![Schematic view of the emulsifier with coordinates system. Note that point (0,0) is placed at the end of processing element and the glass/fluid interface.](image)

Figure 2.2. Schematic view of the emulsifier with coordinates system. Note that point (0,0) is placed at the end of processing element and the glass/fluid interface.
Table 2.1 collects list of experiments for S50 oil without surfactant and brief comments to observations.

Table 2.1. Summarized experimental results for S50 oil, emulsion without surfactant

<table>
<thead>
<tr>
<th>Position in the emulsifier model</th>
<th>Velocity of the droplet V_d [m/s]</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap</td>
<td>12.1</td>
<td>lack of oil-drops deformations (fig. 2.3)</td>
</tr>
<tr>
<td>$x = 0, y = -0.3$ (just behind processing element)</td>
<td>10.8</td>
<td>lack of oil-drops deformations (fig. 2.4)</td>
</tr>
<tr>
<td>$x = 2, y = -0.4$</td>
<td>4.5</td>
<td>oil-drops deformations occurs (fig. 2.5)</td>
</tr>
<tr>
<td>$x = 5, y = -0.4$</td>
<td>6.7</td>
<td>lack of oil-drops deformations (fig. 2.6)</td>
</tr>
</tbody>
</table>

Figure 2.3 shows drops of S50 oil in the gap – emulsion without surfactant. No deformations of the drops were observed.

![Figure 2.3](image)

Figure 2.3. Result for S50 oil – emulsion without surfactant; oil-drops in the gap; velocity of the droplet $v_d = 12.1 \text{ m/s}$; figure width corresponds to 432 μm.

For the same emulsion 0.3mm below glass, just behind processing element no deformations were observed (see fig. 2.4).

![Figure 2.4](image)

Figure 2.4. Result for S50 oil – emulsion without surfactant; oil drops just behind processing element and 0.3mm below glass wall ($x = 0, y = -0.3$); velocity of the droplet $v_d = 10.8 \text{ m/s}$; figure width corresponds to 432 μm.
Figure 2.5. shows a few pictures for S50 oil – emulsion without surfactant, which were, captured 2mm behind the gap and 0.4mm below the glass wall. One can see various deformed shapes of drops flattened by the flow and elongated oil structures.

![Figure 2.5](image1.png)

Figure 2.5. Result for S50 oil – emulsion without surfactant; oil drops 2mm behind processing element and 0.4mm below glass wall (x = 2, y = -0.4); velocity of the droplet \(v_d = 4.5 \text{m/s} \); figure width corresponds to 432\(\mu \text{m} \).

Image presented in the figure 2.6 shows emulsion 5mm behind the processing element and 0.4mm below the wall. Droplets seem to be not deformed.

![Figure 2.6](image2.png)

Figure 2.6. Result for S50 oil – emulsion without surfactant; oil drops 5mm behind processing element and 0.4mm below glass wall (x = 5, y = -0.4); velocity of the droplet \(v_d = 6.7 \text{m/s} \); figure width corresponds to 432\(\mu \text{m} \).
Table 2.3. Summarized experimental results for S50 oil, emulsion with 1% wt anionic surfactant sodium dodecyl sulfate (SDS)

<table>
<thead>
<tr>
<th>Position in the emulsifier model</th>
<th>Velocity of the droplet V_d [m/s]</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap</td>
<td>12.3</td>
<td>lack of oil-drops deformations (fig. 2.7)</td>
</tr>
<tr>
<td>$x = 2, y = 0.0$</td>
<td>10.3</td>
<td>lack of oil-drops deformations (fig. 2.8)</td>
</tr>
<tr>
<td>$x = 2, y = -0.1$</td>
<td>10.9</td>
<td>lack of oil-drops deformations (fig. 2.9)</td>
</tr>
<tr>
<td>$x = 2, y = -0.2$</td>
<td>9.7</td>
<td>oil-drops deformations occurs (fig. 2.10)</td>
</tr>
<tr>
<td>$x = 2, y = -0.4$</td>
<td>4.7</td>
<td>oil-drops deformations occurs (fig. 2.11)</td>
</tr>
</tbody>
</table>

In the figure 2.7 which visualized emulsion of S50 oil with surfactant in the gap no deformed droplets were observed.

![Figure 2.7](image)

Figure 2.7. Result for S50 oil – emulsion with 1%wt SDS surfactant; oil-drops in the gap; velocity of the droplet $v_d = 12.3 m/s$; figure width corresponds to 432µm.

Also 2mm behind the gap on the fluid-wall interface deformation of drops was not observed.

![Figure 2.8](image)

Figure 2.8. Result for S50 oil – emulsion with 1%wt SDS surfactant; oil drops 2mm behind processing element and just below glass wall ($x = 2, y = 0.0$); velocity of the droplet $v_d = 10.3 m/s$; figure width corresponds to 432µm.
Similarly, 2 mm behind the processing element, 0.1 mm below wall drops shape seems to be regular (see fig. 2.9).

Figure 2.9. Result for S50 oil – emulsion with 1%wt SDS surfactant; oil drops 2 mm behind processing element and 0.1 mm below glass wall (x = 2, y = -0.1); velocity of the droplet $v_d = 10.9 \text{m/s}$; figure width corresponds to 432 μm.

0.2 mm below wall some deformed shapes appear (fig. 2.10).

Figure 2.10. Result for S50 oil – emulsion with 1%wt SDS surfactant; oil drops 2 mm behind processing element and 0.2 mm below glass wall (x = 2, y = -0.2); velocity of the droplet $v_d = 9.7 \text{m/s}$; figure width corresponds to 432 μm.

0.2 mm deeper, in the position 2 mm behind the gap and 0.4 mm below wall, larger deformations were observed (see fig. 2.11).

Figure 2.11. Result for S50 oil – emulsion with 1%wt SDS surfactant; oil drops 2 mm behind processing element and 0.4 mm below glass wall (x = 2, y = -0.4); velocity of the droplet $v_d = 4.7 \text{m/s}$; figure width corresponds to 432 μm.
Table 2.4. Summarized experimental results for S500 oil, emulsion with 1% wt anionic surfactant sodium dodecyl sulfate (SDS).

<table>
<thead>
<tr>
<th>Position in the emulsifier model</th>
<th>Velocity of the droplet V_d [m/s]</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap</td>
<td>12.6</td>
<td>lack of oil-drops deformations (fig. 2.12)</td>
</tr>
<tr>
<td>$x = 0, y = -0.2$</td>
<td>11.3</td>
<td>lack of oil-drops deformations (fig. 2.13)</td>
</tr>
<tr>
<td>$x = 2, y = -0.2$</td>
<td>10.5</td>
<td>oil-drops deformations occurs (fig. 2.14)</td>
</tr>
</tbody>
</table>

Also for oil S500 with SDS in the gap and just behind processing element no deformations were observed (fig 2.12 and 2.13).

Figure 2.12. Result for S500 oil – emulsion with 1%wt SDS surfactant; oil-drops in the gap; velocity of the droplet $v_d = 12.6 m/s$; figure width corresponds to 432µm.

Figure 2.13. Result for S500 oil – emulsion with 1%wt SDS surfactant; oil drops just behind processing element and 0.2mm below glass wall ($x = 0, y = -0.2$); velocity of the droplet $v_d = 11.3 m/s$; figure width corresponds to 432µm.
Figure 2.14 shows images of deformed S500 oil droplets 2 mm behind processing element and 0.2 mm below wall.

Figure 2.14. Result for S500 oil – emulsion with 1%wt SDS surfactant; oil drops 2 mm behind processing element and 0.2 mm below glass wall (x = 2, y = -0.2); velocity of the droplet $v_d = 10.5 \text{ m/s}$; figure width corresponds to 432 μm.

Figure 2.15 shows motionless final emulsion created by a few dozen times passes through the emulsifier. Figure 2.15a and 2.15b present S50 and S500 oil drops, respectively, in emulsion with surfactant.

Figure 2.15. Motionless emulsion observed under microscope: a) S50 oil with 1%wt SDS surfactant, b) S50 oil with 1%wt SDS surfactant; figure width corresponds to 432 μm.

2.3 Conclusions

Visualization of droplets break-up in the emulsifier indicate that the process takes place few millimeters behind processing element. We could not find “large” droplets in the gap and we do not observe drops break-up process. However, there are “large” droplets observed behind the gap. It is not clear to us if these droplets are created due to the agglomeration in the dead-water region (re-circulation zone after the gap), or we couldn’t catch with our camera large droplets in the gap. The flow observations are performed in the vicinity of the channel center only. It is possible that some large droplets are trapped by the sidewalls of the gap, invisible.
to the camera. They may enter the re-circulation zone, and being transported by a cross-flow to the center become visible in the field of observation. It would indicate existence of a strong cross-flow in this region, in fact partly visible in our velocity field measurements.
3. Visualization of liquid jet break-up and droplet formation for co-flow

Visualization of liquid jet break-up and droplet formation for co-flow in the geometry G3 is investigated under the microscope using 4x objective and PCO HS1200 camera. The corresponding scale for images is 1pixel = 3.012um or 1um = 0.332pixel. The carrier fluid is supplied with controlled flow rate Q_e to the horizontally orientated channel. Silicon oil is injected coaxially at the flow rate Q_j to create a liquid jet. To avoid effects of buoyancy water-alcohol mixture is used as the carrier fluid. The water-alcohol volume ratio necessary to match densities of continuous and dispersed phase is approximately 5:2. To stabilize surface tension effects 1%wt anionic surfactant sodium dodecyl sulfate (SDS) is added to the carrier fluid. Two different silicone oils are used to change the droplet phase viscosity: S50 (50mPas) and S500 (500mPas). Table 3.1 below summarizes range of varied flow rate and gives the corresponding average velocity for continuous (external) and dispersed (jet) phase.

Table 3.1. Jet break-up study. The mean flow velocities V_e and V_j are based on the channel cross-section and inner nozzle diameter, respectively.

<table>
<thead>
<tr>
<th>Oil</th>
<th>Q_e [cm3/s]</th>
<th>V_e [cm/s]</th>
<th>Q_j [mm3/s]</th>
<th>V_j [mm/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S50 (50mPas)</td>
<td>1.08 - 3.57</td>
<td>2.16 – 7.14</td>
<td>22 – 33</td>
<td>112.2 – 168.3</td>
</tr>
<tr>
<td>S500 (500mPas)</td>
<td>0.92 – 1.72</td>
<td>1.84 - 3.44</td>
<td>5.5 –33</td>
<td>28.1 - 168.3</td>
</tr>
</tbody>
</table>

The liquid jet observed in the channel shows basic similarities to typical jet instabilities described for air-liquid systems. At lower viscosity of the dispersed phase (S50) the jet issuing from the nozzle at relatively low velocity creates tiny neck and shortly after it breaks-up creating large droplet and a sequence of very small satellites (Fig. 3.1). The characteristic thin filament is present before droplet separates. This thin micro-jet reaches diameter of about 1µm before the break-up occurs. The resulting satellite droplets have diameters below 5µm. When the jet flow rate is increased from 22mm3/s to 33mm3/s, the break-up process slightly changes. The jet break-up period decreases from 60ms to 50ms and the visible jet neck doubles its length before droplet separation occurs. Also the thin filament length reaches over 1.5mm before it breaks-up into several satellites.

![Figure 3.1](image-url)
| a | b |

Figure 3.1. Silicone oil jet S50. (a) - oil injected at flow rate $Q_j = 22$mm3/s into water-alcohol channel flow at the rate $Q_e = 1.08$cm3/s. The break-up period is 60ms; (b) - $Q_j = 33$mm3/s and $Q_e = 1.08$cm3/s The width of images corresponds to 3.6mm.

The external flow strongly interacts with the jet and initial increase of the co-flow velocity damps capillary instability and allows to obtain long, cylindrical jet (Fig. 3.2a). However, short length of the channel creates irregularities in the co-flow pattern and generation of recalculation regions. These external flow fluctuation strongly disturb the jet interface, leading to its wave shape, irregular break-up and creation of secondary, thin filaments.
The filaments break-up resembles process observed for droplets processed in the emulsifier.

Figure 3.2. Silicone oil jet S50. Oil injected at flow rate $Q_j = 33\text{mm}^3/\text{s}$ into water-alcohol channel flow at the rate $Q_e = 2.7\text{cm}^3/\text{s}$. The jet break-up is driven by shear stresses at the interface.

The experiments performed for ten times more viscous oil (S500) indicate higher damping of capillary instability. At higher jet velocity a long, slowly pulsating cylindrical jet is formed (Fig. 3.3a). The capillary wave observed at the interface has period of about 60ms. The break-up location is far from the nozzle. At lower flow rates of the injected oil, the separation of a droplet commences at a short distance from the nozzle. However, due to the very high viscosity of the jet fluid, very long thin filament is created between remaining part of the jet and departing droplet (Fig. 3.3b). The break-up period recorded for this case is very long (240ms). Further decrease of the oil velocity ($Q_j < 10\text{mm}^3/\text{s}$) leads to the “filling” mode, i.e. oil continuously fills up the channel section in the vicinity of the nozzle. There is no jet structure and collected in the channel bulk oil is time-to-time partly removed by the continuous phase flow.

Figure 3.3. Silicone oil jet S500. a - oil injected at flow rate $Q_j = 33\text{mm}^3/\text{s}$ into water-alcohol channel flow at the rate $Q_e = 1.3\text{cm}^3/\text{s}$, the period of observed capillary wave 60ms.; b – thin filament shortly before droplet separation (not visible). $Q_j = 14\text{mm}^3/\text{s}$, $Q_e = 1.47\text{cm}^3/\text{s}$, the break-up period 240ms.

Experiments performed for two different viscosities can summarized in then following way. For the less viscous liquid the capillary instability seems to play a role at low velocity of the continuous phase. At higher velocities disturbances of the flow in the channel lead to “turbulent-like” flow structure with several recalculation zones. This perturbation can be used to study break-up mechanisms at a turbulent shear flow field.

At higher liquid viscosity it is difficult to reach stable configuration corresponding to capillary (Rayleigh-like) break-up process. This probable due to relatively long minimum wavelength of the most unstable mode, comparable with the size of the channel. Hence at higher flow rates the jet appears very stable (Fig.3.3a). For lower jet velocities the droplets are created close to the nozzle and convected by the external flow field. It creates extremely long detachment filaments (Fig. 3.3b). Break-up of these filaments is probably the most promising source of micro- and nano-droplets searched for in the present study.
4. Numerical simulation of the flow through the planar emulsifier

4.1 Geometry configuration and mesh parameters

For numerical simulations three different geometries of the planar emulsifier were defined:
1. G0 – whole geometry of the model (fig. 4.1) with transparent processing element (gap size: width: 15mm, high: 0.4mm and length 2mm);
2. G1 – one quarter of the model (fig. 4.2c) with non-transparent processing element (gap size: width: 15mm, height: 0.4mm and length 1mm);
3. G2 – one quarter of the model (fig. 4.2a,b) with transparent processing element (gap size: width: 15mm, height: 0.4mm and length 2mm).

Geometry G0 consists of 1820957 cells, 5190188 faces and 1599368 nodes. In the gaps and in the vicinity of the gap was generated structural hexahedron mesh and in the other parts of the geometry – tetrahedron mesh (fig. 4.3).

Geometry G1 and geometry G2 consists of 457473 cells, 1189395 faces and 302334 nodes. In the gap and in the vicinity of the processing element was generated structural hexahedron mesh with boundary layer (fig. 4.4b and 4.4a for geometry G1 and G2 respectively) and in the other parts of the geometry – tetrahedron mesh.
Figure 4.3. Geometry G0 – mesh used for numerical simulation.

Figure 4.4. Mesh with boundary layer in the gap: a) geometry G2, b) geometry G1.
4.2 Numerical simulation

Using geometry G0 two numerical simulations were done (both for planar emulsifier with transparent processing element):

a. flow rate $Q_a = 0.13 \text{ dm}^3/\text{s}$
b. flow rate $Q_b = 0.204 \text{ dm}^3/\text{s}$

for which parameters collect table 4.1.

Table 4.1. Parameters of the numerical simulations of turbulent flow through emulsifier with transparent processing element – geometry G0.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$Q_a = 0.13 \text{ dm}^3/\text{s}$</th>
<th>$Q_b = 0.204 \text{ dm}^3/\text{s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used package and version</td>
<td>Fluent 6.2.16, double precision, segregated</td>
<td></td>
</tr>
<tr>
<td>Flow type</td>
<td>three-dimensional, steady, incompressible</td>
<td></td>
</tr>
<tr>
<td>Viscous</td>
<td>standard $k-\varepsilon$ turbulence model</td>
<td></td>
</tr>
<tr>
<td>Flowed medium</td>
<td>water, constant density $\rho = 998.2 \text{ kg/m}^3$ and viscosity $\mu = 0.001003 \text{ kg/ms}$</td>
<td></td>
</tr>
<tr>
<td>Mass flow-rate</td>
<td>0.13 kg/s</td>
<td>0.2306 kg/s</td>
</tr>
<tr>
<td>Inlet</td>
<td>mass-flow inlet, turbulence intensity 12.1%</td>
<td>mass-flow inlet, turbulence intensity 11.4%</td>
</tr>
<tr>
<td></td>
<td>hydraulic diameter 0.0109</td>
<td>hydraulic diameter 0.0109</td>
</tr>
<tr>
<td>Outlet</td>
<td>pressure outlet, turbulence intensity 12.1%</td>
<td>pressure outlet, turbulence intensity 11.4%</td>
</tr>
<tr>
<td></td>
<td>hydraulic diameter 0.0109</td>
<td>hydraulic diameter 0.0109</td>
</tr>
<tr>
<td>Discretization Scheme</td>
<td>Pressure: standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Momentum: Second Order Upwind</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turbulence Kinetic Energy: Second Order Upwind</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turbulence Dissipation Rate: Second Order Upwind</td>
<td></td>
</tr>
</tbody>
</table>

For flow rate $Q_b = 0.204 \text{ dm}^3/\text{s}$ using geometry G1 and G2 (emulsifier with non-transparent and transparent processing element) following simulations were done:

- $g1\text{lam}$ and $g2\text{lam}$ – laminar unsteady flow simulations through emulsifier with non-transparent and transparent processing element respectively,

- $g1\text{ke}$ and $g2\text{ke}$ – simulation of the steady turbulent flow through emulsifier with non-transparent and transparent processing element respectively using $k-\varepsilon$ turbulence model with Enhanced Wall Treatment on the walls in the gap and vicinity of the gap; additionally was used grid adaptation based on the gradient of velocity magnitude (refine threshold 0.0001) and Yplus parameter (allowed value: 1 – 2).

Tables 4.2 and 4.3 collect parameters for laminar and turbulent simulations respectively.

Table 4.2. Parameters of the numerical simulations of laminar flow through emulsifier with non-transparent and transparent processing element – geometry G1 and G2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$Q_a = 0.13 \text{ dm}^3/\text{s}$</th>
<th>$Q_b = 0.204 \text{ dm}^3/\text{s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used package and version</td>
<td>Fluent 6.2.16, double precision, segregated</td>
<td></td>
</tr>
<tr>
<td>Flow type</td>
<td>three-dimensional, laminar, unsteady, incompressible</td>
<td></td>
</tr>
<tr>
<td>Flowed medium</td>
<td>water, constant density $\rho = 998.2 \text{ kg/m}^3$ and viscosity $\mu = 0.001003 \text{ kg/ms}$</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Mass flow-rate</td>
<td>0.051 kg/s (one quarter of Q=0.204 kg/s)</td>
<td></td>
</tr>
<tr>
<td>Inlet</td>
<td>mass-flow inlet</td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td>pressure outlet</td>
<td></td>
</tr>
<tr>
<td>Discretization Scheme</td>
<td>Pressure: standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Momentum: Second Order Upwind</td>
<td></td>
</tr>
<tr>
<td>Time Step Size</td>
<td>1×10^{-7} s</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.3. Parameters of the numerical simulations of turbulent flow through emulsifier with non-transparent and transparent processing element – geometry G1 and G2.

<table>
<thead>
<tr>
<th>Geometry G1 and CG2 (g1ke and g2ke)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used package and version</td>
</tr>
<tr>
<td>Flow type</td>
</tr>
<tr>
<td>Viscous</td>
</tr>
<tr>
<td>Flowed medium</td>
</tr>
<tr>
<td>Mass flow-rate</td>
</tr>
<tr>
<td>Inlet</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Outlet</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Discretization Scheme</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Grid Adaptation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

4.3 Numerical simulations results for geometry G0.

Figures presented in this chapter show results of the numerical simulation of the flow through emulsifier model – geometry G0 (transparent processing element) with two flow rates: $Q_a = 0.13$ dm3/s and $Q_b = 0.204$ dm3/s.

For results presentation four sections was defined (fig. 4.5):

- vertical – longitudinal section along emulsifier model,
- vertical – cross section 5.5mm before processing element (cross-section I),
- vertical – cross section in the middle of the gap (cross-section II),
- vertical – cross section 9.5mm behind processing element (cross-section III).

Figure 4.5. Selected cross-sections: I – 5.5mm before processing element, II – in the middle of the gap, III – 9.5mm behind processing element.
Figure 4.6 shows longitudinal section along emulsifier model of the velocity vectors field in the gaps and in the space behind processing element for flow rates $Q_a = 0.13 \text{ dm}^3/\text{s}$ (fig. 4.6a) and $Q_b = 0.204 \text{ dm}^3/\text{s}$ (fig. 4.6b). Vectors are colored by velocity magnitude. For both cases flow fields are very similar in structure, differences occur in velocity value, only. For flow rate $Q_a = 0.13 \text{ dm}^3/\text{s}$ maximum velocity is about 12 m/s in the gaps and for $Q_b = 0.204 \text{ dm}^3/\text{s}$ about 20 m/s. Strong recirculation zone and reverse flow in the space behind processing element are significant in this region of the emulsifier and can influence oil-droplets break-up process.

Figure 4.6. Velocity vectors in the vicinity of the processing element [m/s]: a) $Q_a = 0.13 \text{ dm}^3/\text{s}$, b) $Q_b = 0.204 \text{ dm}^3/\text{s}$.
Contours of the velocity magnitude shown in the figure 4.7 confirm similarity of the flow structure in the vicinity of the processing element for both flow rates. Additionally we can notice that flow velocity in the region before gaps is very low and flow acceleration occurs in the gaps between processing element and walls, mainly.

Figure 4.7. Contours of velocity magnitude [m/s]: a) $Q_a = 0.13 \text{ dm}^3/\text{s}$, b) $Q_b = 0.204 \text{ dm}^3/\text{s}$.
Similarly, as it is shown in the figure 4.8, cross-sections of the velocity magnitude contours are almost identical for flow rates $Q_a = 0.13 \, dm^3/s$ (fig. 4.8a) and $Q_b = 0.204 \, dm^3/s$ (fig. 4.8b).

Figure 4.8. Contours of velocity magnitude – selected cross-sections [m/s]: a) $Q_a = 0.13 \, dm^3/s$, b) $Q_b = 0.204 \, dm^3/s$.

33
Figure 4.9 shows longitudinal section of the velocity x-component along emulsifier model. Backflow in the region behind processing element is significant and for the flow rate $Q_a = 0.13 \ dm^3/s$ is about $-2 \ m/s$ (blue area behind processing element in the fig. 4.9a) and for $Q_b = 0.204 \ dm^3/s$ is about $-4 \ m/s$ (fig. 4.9b).

Figure 4.9. Contours of velocity x-component [m/s]: a) $Q_a = 0.13 \ dm^3/s$, b) $Q_b = 0.204 \ dm^3/s$.
Contours of the absolute pressure (fig. 4.10) shows that pressure drop occurs mainly in the same place where flow is accelerated, i.e. in the gaps between processing element and walls. Pressure for flow rate $Q_a = 0.13 \text{ dm}^3/\text{s}$ decreases from value about $1.83 \cdot 10^5 \text{ Pa}$ before the gaps to atmospheric pressure (about 10^5 Pa) at the outlet (fig. 4.10a) and for low rate $Q_b = 0.204 \text{ dm}^3/\text{s}$ decrease from $3 \cdot 10^5 \text{ Pa}$ to atmospheric pressure at the outlet (fig. 4.10b).

Figure 4.10. Contours of absolute pressure [Pa]: a) $Q_a = 0.13 \text{ dm}^3/\text{s}$, b) $Q_b = 0.204 \text{ dm}^3/\text{s}$.

Figure 4.11 shows turbulent kinetic energy distribution along emulsifier model. For both cases this energy reaches maximum value at the inlet to the gaps: for flow rate $Q_a = 0.13 \, \text{dm}^3/\text{s}$ it is $k_a = 12 \, \text{m}^2/\text{s}^2$, and for $Q_b = 0.204 \, \text{dm}^3/\text{s}$ it is $k_b = 32 \, \text{m}^2/\text{s}^2$. Also, turbulent kinetic energy takes high value in the regions behind processing element, where occurs mixing of the fluid with high velocity value flowed from gaps and fluid with low velocity value behind processing element.

![Figure 4.11](image.png)

Figure 4.11. Contours of Turbulent Kinetic Energy [m^2/s^2]: a) $Q_a = 0.13 \, \text{dm}^3/\text{s}$, b) $Q_b = 0.204 \, \text{dm}^3/\text{s}$.
Profiles in the figure 4.12 shows averaged turbulent dissipation rate ε along the gap for both flow rates: $Q_a = 0.13 \text{ dm}^3/\text{s}$ (fig. 4.12a) and $Q_b = 0.204 \text{ dm}^3/\text{s}$ (fig 4.12b).

Turbulent dissipation rate reaches maximum value at the inlet to the gap, as it is shown. For flow rate Q_a this maximum value is about $\varepsilon_{a}^{\text{max}} = 1.84 \cdot 10^5 \text{ m}^2/\text{s}^3$ and for Q_b about $\varepsilon_{b}^{\text{max}} = 5.59 \cdot 10^5 \text{ m}^2/\text{s}^3$.

Epsilon averaged over the whole gap is: $\varepsilon_{a}^{\text{avg}} = 7.29 \cdot 10^4 \text{ m}^2/\text{s}^3$ and $\varepsilon_{b}^{\text{avg}} = 2.65 \cdot 10^5 \text{ m}^2/\text{s}^3$ for flow rate Q_a and Q_b respectively.

Figure 4.12. Profile of the averaged Turbulent Dissipation Rate $\textit{Epsilon}$ through the gap: a) $Q_a = 0.13 \text{ dm}^3/\text{s}$, b) $Q_b = 0.204 \text{ dm}^3/\text{s}$.
4.4 Numerical simulations results for geometry G1 and G2 (simulations g1ke and g2ke)

Presented in this chapter figures show results of the numerical simulation of the flow through emulsifier model with geometry G1 and G2 (non-transparent and transparent processing element, respectively) for flow rate $Q = 0.204 \text{ dm}^3/\text{s}$.

For results presentation, like in the chapter 4.3, four sections was defined (see fig. 4.5):
- vertical – longitudinal section along emulsifier model,
- vertical – cross section 5.5mm before processing element (cross-section I),
- vertical – cross section in the middle of the gap (cross-section II),
- vertical – cross section 9.5mm behind processing element (cross-section III).

Figure 4.13. Velocity vectors in the vicinity of the processing element [m/s]: a) simulation g2ke, b) simulation g1ke.

Figure 4.13 shows longitudinal section along emulsifier model of the velocity vectors field in the gap and in the region behind processing element for emulsifier with transparent (fig. 4.13a) and non-transparent (fig. 4.13b) processing element. For both cases flow fields are very similar in structure and in the velocity value (vectors color).

This is confirmed by next figure 4.14, which shows contours of the velocity magnitude. For both cases (fig. 4.14a and 4.14b) maximum velocity is in the gap between processing element and walls and takes value about 20m/s.

Cross-sections of the velocity magnitude presented in the figure 4.15 are almost identical for emulsifier geometry G1 and G2. It proves that differences in flow structure and velocity value for both used geometries are very small.
Figure 4.14. Contours of velocity magnitude [m/s]: a) simulation g2ke, b) simulation g1ke.

Figure 4.15. Contours of velocity magnitude – selected cross-sections [m/s]: a) simulation g2ke, b) simulation g1ke.
Figure 4.16. Contours of velocity x-component [m/s]: a) simulation g2ke, b) simulation g1ke.

Figure 4.16 shows longitudinal section along emulsifier model of the velocity x-component for geometry G1 and G2. For both cases backflow in the region behind processing element is significant. Velocity value of this reverse flow is about \(-5\) m/s (blue area behind processing element). Velocity in the gap is about 20 m/s.

Figure 4.17. Contours of absolute pressure [Pa]: a) simulation g2ke, b) simulation g1ke.

Contours of the absolute pressure presented in figure 4.17 shows that pressure drop occurs in the gap, mainly. Pressure decreases here from \(3 \cdot 10^5\) Pa to atmospheric pressure \(10^5\) Pa. Also,
it can be noticed, that distribution of the absolute pressure for both geometries: with non-transparent and transparent element (geometry G1 and G2) are very similar.

![Figure 4.18. Contours of Turbulent Kinetic Energy [m2/s2]: a) simulation g2ke, b) simulation g1ke.](image)

Distribution of the turbulent kinetic energy (fig. 4.18) shows that maximum value is reached in the region behind processing element, where occurs mixing of the fluid with high velocity value flowed from gap and fluid with low velocity value behind processing element. Differences in turbulent kinetic energy distribution for geometry G1 (fig. 4.18b) and geometry G2 (fig. 4.18a) are very small.

![Figure 4.19. Horizontal profile of the averaged Turbulent Dissipation Rate ε through the gap for emulsifier with non-transparent (g1ke) and transparent (g2ke) processing element.](image)

Profiles presented in figure 4.19 shows averaged turbulent dissipation rate (ε) distribution along the gap for geometry G1 (green line) and for geometry G2 (red line). ε takes maximum value at the inlet to the gap, as it is shown in figure 4.19. For
geometry G1 this maximum is about $\varepsilon_{g1ke}^{\text{max}} = 1.044 \cdot 10^6 \text{ m}^2/\text{s}^3$, and for geometry G2 about $\varepsilon_{g2ke}^{\text{max}} = 4.429 \cdot 10^5 \text{ m}^2/\text{s}^3$. But, not far away from inlet to the gap, Epsilon for both geometries reaches similar value $\varepsilon = 2 \cdot 10^5 \text{ m}^2/\text{s}^3$.

Epsilon averaged over the whole gap is $\varepsilon_{g1ke}^{\text{avg}} = 3.453 \cdot 10^5 \text{ m}^2/\text{s}^3$ for geometry G1 and $\varepsilon_{g2ke}^{\text{avg}} = 2.011 \cdot 10^5 \text{ m}^2/\text{s}^3$ for geometry G2.

Figure 4.20. Vertical profiles of the Epsilon (a) and Turbulent Kinetic Energy (b) in the middle of the gap for emulsifier with non-transparent (g1ke) and transparent (g2ke) processing element.

Figure 4.20 shows vertical profiles of the turbulent dissipation rate (Epsilon) and turbulent kinetic energy in the middle of the gap (fig. 4.20) and 1mm behind processing element (fig. 4.21). In all presented figures, differences between results obtained for geometry G1 (green points) and for geometry G2 (red points) are not too big.

Figure 4.21. Vertical profiles of the Epsilon (a) and Turbulent Kinetic Energy (b) 1mm after processing element for emulsifier with non-transparent (g1ke) and transparent (g2ke) processing element.

Figure 4.20a shows that in the gap Epsilon reaches maximum value in the vicinity of the walls of the gap, and turbulent kinetic energy – in the central region of the gap (fig. 4.20b).
Figure 4.21a shows that Epsilon profile located 1mm behind processing element reaches high value in the vicinity of the wall. Then Epsilon decreases and reaches high value 0.5mm below wall, again, where occurs mixing of the fluid with high velocity value flowed from gap and fluid with low velocity value behind processing element. Similar distribution is for turbulent kinetic energy (fig. 4.21b), which reaches maximum value 0.5mm below wall, also.

4.5 Comparison of the experimental and numerical results

For verification of the numerical simulation, comparison of numerical and experimental results was done. Figure 4.22 shows profiles of the velocity x-component obtained from numerical simulation (green points) and from PIV measurements (red line) 1mm behind processing element (fig. 4.22a), 3mm behind processing element (fig. 4.22b), and 8mm behind processing element (fig. 4.22c).

\[d_{\text{max}} = 0.749 \frac{\sigma^{\frac{3}{5}}}{\rho_c^{\frac{1}{5}} \varepsilon^{\frac{7}{5}}} \]

where: \(d_{\text{max}} \) – maximum oil droplets diameter, \(\sigma \) – interfacial tension, \(\rho_c \) – dispersing medium density, \(\varepsilon \) - turbulent dissipation rate;

4.6 Estimation of the maximum oil-drops size based on the numerical results

Based on numerical simulations results estimation of the obtained oil drops size in investigated emulsification process was done. Two different theories were used:

- Hinze theory:

\[d_{\text{max}} = 0.749 \frac{\sigma^{\frac{3}{5}}}{\rho_c^{\frac{1}{5}} \varepsilon^{\frac{7}{5}}} \]
- Davis theory

\[
d_{\text{max}} = \frac{K}{\rho_c^{\frac{3}{5}} \cdot \varepsilon^{\frac{2}{5}} \cdot \left(\sigma + \frac{\mu_d \sqrt{2} (\varepsilon \cdot d_{\text{max}})^{\frac{1}{3}}}{4} \right)^{\frac{3}{5}}},
\]

where: \(d_{\text{max}}\) – maximum oil droplets diameter, \(K\) – constant (\(K = 0.748\)), \(\sigma\) – interfacial tension, \(\rho_c\) – dispersing medium density, \(\varepsilon\) - turbulent dissipation rate, \(\mu_d\) – dispersed medium viscosity.

Estimation was done for two silicone oils:
- silicone oil S50 with viscosity \(\mu_d^{S50} = 50\text{mPas}\),
- silicone oil S500 with viscosity \(\mu_d^{S500} = 500\text{mPas}\).

As dispersing medium was used substance with properties:
- density \(\rho_c = 998\text{kg/m}^3\),
- interfacial tension \(\sigma = 5.5\text{mN/m}\)

which corresponds to properties of de-ionized water with 1%wt anionic surfactant sodium dodecyl sulfate (SDS).

Figure 4.23 shows calculated dependence between oil droplets diameter and turbulent dissipation rate (Epsilon) for both silicone oils using Hinze and Davis theory. For small Epsilon value, small changes of the Epsilon strongly influence changes of the oil drops diameter. For Epsilon above \(2 \cdot 10^5\text{m}^2/\text{s}^3\), changes of the Epsilon insignificantly influence changes of the oil drops diameter.

![Figure 4.23](image)

Figure 4.23. Estimated dependence between Turbulent Dissipation Rate *Epsilon* and oil-drops diameter for used silicone oils.

Table 4.4 collect results of estimation of the oil droplets diameter for:
- two geometries of emulsifier model used in numerical simulations: geometry G1 and G2,
- both used silicone oils: S50 and S500,
- Hinze theory and Davis theory,
- maximum value of turbulent dissipation rate ϵ_{max} in the gap and averaged over whole gap value of turbulent dissipation rate ϵ_{avg}.

Table 4.4. Results of the oil drops diameter estimation.

<table>
<thead>
<tr>
<th></th>
<th>Hinze theory both oils $[\mu m]$</th>
<th>Davis theory oil S50 $[\mu m]$</th>
<th>Davis theory oil S500 $[\mu m]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsifier with transparent processing element</td>
<td>max. epsilon value in gap $\epsilon_{\text{max}}=4.429 \cdot 10^5 \text{ m}^2/\text{s}^3$</td>
<td>2.89</td>
<td>8.44</td>
</tr>
<tr>
<td></td>
<td>avg. epsilon value in gap $\epsilon_{\text{avg}}=2.011 \cdot 10^5 \text{ m}^2/\text{s}^3$</td>
<td>3.96</td>
<td>10.55</td>
</tr>
<tr>
<td>Emulsifier with non-transparent processing element</td>
<td>max. epsilon value in gap $\epsilon_{\text{max}}=1.044 \cdot 10^6 \text{ m}^2/\text{s}^3$</td>
<td>2.05</td>
<td>6.65</td>
</tr>
<tr>
<td></td>
<td>avg. epsilon value in gap $\epsilon_{\text{avg}}=3.453 \cdot 10^5 \text{ m}^2/\text{s}^3$</td>
<td>3.19</td>
<td>9.05</td>
</tr>
</tbody>
</table>

4.7 Conclusions

Numerical modeling confirmed main details of the velocity flow field measured by the micro-PIV method. It gives confidence that generated numerical data can be applied for predicting conditions for droplets break-up in a shear flow. The laminar and turbulent flow models are successfully applied producing similar flow structure. It indicates that intensity of turbulence is relatively low and that the droplets break-up process may depend not only on the turbulent dissipation energy but mainly on the shear gradients of strongly fluctuating in time quasi-laminar flow field.
5. Publications list

6. Summary and conclusions

1. Velocity measurements (micro-PIV) indicate almost uniform velocity flow field in the gap region. It means that turbulence is still not fully developed and only strong shear gradients may be responsible for the droplet break-up. After processing element there is strong recalculation zone with a reversal flow. The turbulent fluctuations of the velocity field, break-up of the flow symmetry observed in this region indicate that here probably occurs transition from laminar to turbulent flow regime.

2. Visualization of droplets break-up in the homogenizer indicate that the process takes place few millimeters behind processing element. We could not find “large” droplets in the gap and we do not observe drops break-up process. However, there are “large” droplets observed behind the gap. It is not clear to us if these droplets are created due to the agglomeration in the dead-water region (re-circulation zone after the gap), or we couldn’t catch with our camera large droplets in the gap. The flow observations are performed in the vicinity of the channel center only. It is possible that some large droplets are trapped by the sidewalls of the gap, invisible to the camera. They may enter the re-circulation zone, and being transported by a cross-flow to the center become visible in the field of observation. It would indicate existence of a strong cross-flow in this region, in fact partly visible in our velocity field measurements.

3. The capillary break-up of the liquid jet in co-flow is used to produce single droplets. Well-controlled production of single micro-droplets is necessary for studying accumulation of nano-particles at the interface, the main target of the project. The experiments performed indicated that small droplets (1um) are created as satellites during fluid-threads break-up. The process of a micro-thread formation was previously observed and investigated [Kowalewski, Fluid Dyn. Res. 1996] for break-up of viscous jets in air. Similar process is found in the present study for two-liquids system. A hydrodynamic separation of small satellites created after the thread break-up is perhaps the simplest method of utilizing jet break-up for micro-droplets production.

4. Numerical modeling confirmed main details of the velocity flow field measured by the micro-PIV method. It gives confidence that generated numerical data can be applied for predicting conditions for droplets break-up in a shear flow. The laminar and turbulent flow models are successfully applied producing similar flow structure. It indicates that intensity of turbulence is relatively low and that the droplets break-up process may depend not only on the turbulent dissipation energy but mainly on the shear gradients of strongly fluctuating in time quasi-laminar flow field.