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Abstract. Here, we investigate theoretically the production of monodisperse emulsions 

with the help of microporous membranes. To understand the mechanism of drop detachment 

from a pore, theoretical calculations for the case without cross flow have been performed. The 

Navier-Stokes equation has been solved and the fields of velocity and pressure have been 

computed for the interior and exterior of oil drop, which is growing at the orifice of a pore. 

The driving force of the drop detachment turns out to be the viscous stress due to the flow of 

the liquid, supplied by the pore, which feeds the growing drop. For drop detachment, it is not 

necessary the viscous stress to cause a violation of the force balance in the system. Instead, it 

is sufficient the viscous stress to produce a deformation in the drop shape, which leads to the 

appearance of a necking instability, in analogy with the case of a pendant drop. This 

instability brings about the drop detachment, which corresponds to a transition from stable to 

unstable equilibrium. The driving force, due to the liquid flow inside the growing drop, and 

the resistance force, due to the outer fluid, are quantified. 

 

1. Introduction 

The method of membrane emulsification has found a considerable development and many 

applications during the last decade. The method has been applied in many fields, in which 

monodisperse emulsions are needed. An example is the application in food industry for 

production of oil-in-water (O/W) emulsions: dressings, artificial milk, cream liqueurs, as well 

as for preparation of some water-in-oil (W/O) emulsions: margarine and low-fat spreads. 

Another application of this method is for fabrication of monodisperse colloidal particles: 

silica-hydrogel and polymer microspheres; porous and cross-linked polymer particles; 

microspheres containing carbon black for toners, etc. A third field of utilization is for 
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obtaining multiple emulsions and microcapsules, which have found applications in pharmacy 

and chemotherapy. Closely related to the membrane emulsification is the method employing 

capillary tubes and micro-channels to produce monodisperse emulsions.  

A key problem of membrane emulsification is to explain and predict the dependence of 

the drop diameter, ddrop, on the experimental parameters: pore diameter, dpore, applied cross 

flow in the continuous phase, flux of the disperse phase along the pores, viscosity of the oil 

and water phases, interfacial tension and kinetics of surfactant adsorption, etc. (Here and 

hereafter we call “disperse” the phase from which the drops are made, despite the fact that this 

phase is continuous before the drop detachment from the membrane.) The values of the ratio 

ddrop/dpore, reported in different experimental works, vary in the range from 2 to 10; the 

reasons for this variation have not yet been well understood. Below we briefly consider the 

major factors affecting the ratio ddrop/dpore. 

 The flow of the disperse phase along the pores of the emulsification membrane can be 

varied by controlling the pressure difference applied across the membrane. The experiments 

show that typically an increase of the transmembrane flow (or of the applied pressure) results 

in a greater mean drop size and in a higher polydispersity of the formed drops. Moreover, one 

can distinguish two regimes of transmembrane flow: (i) fixed flow rate and (ii) fixed pressure. 

The former regime takes place in the emulsification setups using a bunch of capillaries or 

micro-channels, where the disperse phase is usually supplied by a pump. The second regime 

is typical for the standard emulsification setups, in which the disperse phase is pushed across 

the membrane by nitrogen gas from a bottle. In this case the gas plays the role of a buffer 

which keeps constant the applied pressure difference across the membrane; on the other hand, 

the flow rate along a given pore may oscillate when drops grow and detach at its orifice. 

 The oil-water interfacial tension, σ, is recognized to be the major retention force, that is 

the force which keeps the drops attached to the membrane surface. Greater σ is expected to 

cause the production of larger emulsion drops. Complications arise from the fact that, as a 

rule, a surfactant (emulsifier) is dissolved in the continuous phase to stabilize the produced 

emulsion against drop coalescence. Since the surfactant has a finite rate of adsorption at the 

oil water interface, the coverage of the drop surface with adsorbed surfactant molecules 

decreases (and the dynamic value of σ increases) when the frequency of drop release from the 

pores grows. The latter effect could explain, at least in part, the aforementioned rise in the 

drop size with the increase of the transmembrane pressure.  
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Our study is aimed at revealing the hydrodynamic factors that govern the drop 

detachment from the orifice of a pore. For this goal, we solve the hydrodynamic problem in 

the three spatial regions: (i) inside the pore; (ii) inside the growing drop; and (iii) in the outer 

liquid phase. The driving force, due to the liquid flow inside the growing drop, and the 

resistance force, due to the outer fluid, are quantified. Our working hypothesis is that these 

forces cause deformation of the drop surface that leads to a necking instability and drop 

detachment, as it is with the pendant drops.  

 

2. Kinematics of drop expansion 

 We consider the expansion of an emulsion drop, which is growing at the tip of a 

capillary. Our purpose is to model the formation of drops at the openings of the pores of an 

emulsification membrane. We are dealing with microscopic drops, for which the gravitational 

deformation of the drop shape is negligible. Here, we consider the simpler case, in which 

there is no cross-flow in the outer liquid phase; i.e. the only motion in the outer fluid is caused 

by the drop formation. 

 Because we are dealing with small drops, we will simplify our treatment by the 

assumption that the drop surface is (approximately) spherical. The membrane pore will be 

modeled as a cylindrical channel, see Fig. 1. The radius of the drop surface will be denoted by 

Rs, while the inner radius of the channel (pore) – by Rp. To describe the process of drop 

formation, we will use cylindrical coordinates (r,z), where the z-axis coincides with the axis of 

rotational symmetry of the system, and the plane z = 0 coincides with the outer membrane 

surface (Fig. 1). 

 The inner and outer liquids will be referred as “phase a” and “phase b”, respectively. 

For example, “phase a” could be oil and “phase b” – water, or vice versa. Due to the 

symmetry, the velocity field in the respective phase can be expressed in the form: 

zrzr wuwu eeveev bbbaaa     , +=+=         (2.1) 

where er and ez are the unit vectors of the respective axes. Inside the channel, far from its 

orifice, we have Poiseuille flow of the inner liquid: 

−∞→≤≤−== zRr
R
rvwu    and   0for      )1(2    , 0 p2

p

2

maa     (2.2) 

Here vm is the mean velocity, and the subscript “a” denotes the inner liquid phase. The flow 

rate, Q, of the inner liquid is: 
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where V is the volume of the growing drop and t is time. The volume, V, can be expressed in 

the form: 

α
α
απ

sin
)cos1(

cos2
3 2

3
p

+
+

=
R

V           (2.4) 

where the angle α is shown in Fig. 1. The differentiation of Eq. (2.4), in view of Eq. (2.3), 

yields: 
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The time derivative of the drop radius is: 
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Likewise, for the z-coordinate of the drop center, dz , we obtain: 
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 We will assume that the relative motion of the material points on the drop surface 

corresponds to an isotropic surface expansion. Physically, this corresponds to the case when 

adsorbed surfactant molecules are present at the interface, and the latter behaves as an elastic 

membrane owing to the considerable surface (Gibbs) elasticity. For isotropic interfacial 

expansion, we have αθ /  = s = constant, where θ is the polar coordinate of a given surface 

material point (Fig. 1). Let us denote by (rs,zs) the coordinates of a material point on the drop 

surface with respect to the immobile cylindrical coordinate system bound to the channel of the 

pore (Fig. 1). Then, we obtain:  

)cos(    , )sin( sdsss αα sRzzsRr +==         (2.8) 

The differentiation of Eq. (2.8) at fixed s, along with Eqs. (2.5)–(2.7), yields the radial and 

axial resultants of the surface velocity:  
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Further, with the help of Eqs. (2.9) and (2.10), and the relationship 

zr wu eev sss +=             (2.11) 
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we deduce expressions for the normal and tangential projections of the surface velocity with 

respect to the drop surface:  

)cos(cos
cos1
cos1

ms αθ
α
α

−
−
+

=⋅ vvn          (2.12) 

)sinsin(
cos1
cos1

ms θα
α
α

−
−
+

=⋅ svvt          (2.13) 

where n and t are the running unit normal and tangent to the drop surface (Fig. 1): 

θθθθ sincos    , cossin zrzr eeteen −=+=        (2.14) 

 

3. Basic hydrodynamic equations 

 During membrane emulsification, the typical process of drop detachment occurs at 

small values of the Reynolds number. To check that, we present Eq. (2.3) in the form: 

tRvR ∆≈ /
3
4 3

dm
2
p ππ            (3.1) 

where ∆t is the period of drop formation and Rd is the radius of the detached drops. Then, the 

Reynolds number could be estimated as: 

tR
RRv
∆

≈=
p

3
dpm

3
4Re
η
ρ

η
ρ

          (3.2) 

Substituting typical parameter values: density ρ = 1 g/cm3; dynamic viscosity η = 0.01 poises, 

∆t = 0.1 s; Rd ≈ 3Rp, and Rp ≤ 20 µm, from Eq. (3.2) we obtain Re ≈ 0.14. Hence, the 

Reynolds number is small and the classical Stokes equations can be used to describe the flow 

in the inner and outer liquid phases: 

a
2

aaa     , 0 vv ∇=∇=⋅∇ ηp           (3.3) 

b
2

bbb     , 0 vv ∇=∇=⋅∇ ηp           (3.4) 

where ∇ is the spatial gradient operator; as usual p, v, and η stand for pressure, velocity, and 

dynamic viscosity; the subscripts “a” and “b” denote quantities related to the inner and outer 

liquid phases, respectively. It is convenient to introduce dimensionless variables, denoted by 

tilde, as follows: 

bmbamapp
~    , ~    , ~    , ~ vvvv vvzRzrRr ≡≡≡≡       (3.5) 
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where ∞p  is the equilibrium bulk pressure in the outer phase far from the forming drop; σ is 

the oil/water interfacial tension. With the help of Eqs. (2.1), (3.5) and (3.6), we bring Eqs. 

(3.3) and (3.4) in the form: 
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∂
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∂
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where f = a, b. Equations (3.7)–(3.9), along with the respective boundary conditions (see 

below) form a system of equations for determining f
~p , mff /~ vuu = , and mff /~ vww = . To 

obtain separate equations for the separate unknown variables, we will use a standard 

hydrodynamic approach, viz. we will introduce the dimensionless stream function, ψf, and 

vorticity function, ωf, as follows: 
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In view of Eq. (3.10), the continuity equation, Eq. (3.7), is automatically satisfied. In addition, 

from Eqs (3.8) and (3.9) we obtain: 

)ba,f(      0][    , ][ fff === ωωψ LL         (3.12) 

where the linear operator, L, is defined as 
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The pressure f
~p  is related to the vorticity, ωf. To derive this relationship, we first substitute 

zw ~/~
f ∂∂  from Eq. (3.7) into Eq. (3.9), and next, we apply the definition of ωf in Eq. (3.11): 
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rrz
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4. Boundary conditions 

 An important step in the modeling of the drop expansion is to transform the 

hydrodynamic boundary conditions in the terms of stream and vorticity functions. 
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 (a) At the axis of symmetry, 0~ =r , the radial velocity, uf, and the curl of the fluid flow 

must be zero, irrespective of the value of z. Then, from Eqs. (3.10) and (3.11) one obtains: 

)ba,f(    0~at      0ff ==== rωψ          (4.1) 

 (b) Inside the channel of the pore, far from its orifice, we have Poiseuille flow with a 

parabolic velocity profile given by Eq. (2.2). Then, from Eqs. (2.2), (3.10) and (3.11) we 

derive: 

−∞→≤≤=+−= zrrrr ~  and  1~0at      ~4    , 
2

~~
a

3

a ωψ      (4.2) 

 (c) Next, at the solid wall of the cylindrical pore channel ( 1~ =r , see Fig. 1) we must 

have ua = wa = 0. Substituting 1~ =r  in Eq. (4.2) we get ψa = −1/2. Further, we substitute the 

latter results in the expression for f
~w  in Eq. (3.10) to derive: 

0~  and  1~for      
2
1

~    , 
2
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a ≤==
∂
∂

−= zr
r
ψ

ψ        (4.3) 

Likewise, we have ub = wb = 0 at the solid surface 0~ =z  for 1~ ≥r , which represents the 

boundary of the membrane with the outer fluid (Fig. 1). For this boundary, we obtain: 

0~  and  1~at      0~    , ~2
1 b

b =≥=
∂
∂

−= zr
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ψ

ψ        (4.4) 

Here we have used the fact that the substitution of ψb ∝ r~/1  into Eq. (3.10) yields f
~w  = 0; 

the constant of proportionality is determined from the condition ψb = ψa = −1/2 at 1~ =r , see 

Eq. (4.3). 

 (d) At the drop surface we impose the kinematic boundary condition avn ⋅  = bvn ⋅  = 

svn ⋅ , where svn ⋅  is given by Eq. (2.12). From these relationships, we derive (Appendix A): 
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−
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As discussed after Eq. (2.7), here we treat the expanding drop surface as an expanding elastic 

membrane. In this case, we should have also equal tangential components of the velocities at 

the interface: avt ⋅  = bvt ⋅  = svt ⋅  (no slip boundary condition), where svt ⋅  is given by Eq. 

(2.13). From these equations the following boundary condition of the Neumann type for the 

stream function is derived (Appendix A): 
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where f = a, b. The directional derivative is: 
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In view of Eqs. (4.5) and (4.6), the problem is split to two separate boundary problems in 

phases “a” and “b”. 

 

5. Hydrodynamic force acting on the emulsion drop 

 

5.1. Integral expressions 

 The hydrodynamic force, F, acting on the drop surface, S, is a difference of 

contributions from phases “a” and “b”, Fa and Fb, respectively: 

bbaa d    , d PnFPnF ⋅−=⋅= ∫∫
SS

ss         (5.1) 

where n is an outer normal to the drop surface. In Eq. (5.1), the pressure tensors, Pa and Pb, 

obey the Newton’s law for a viscous fluid: 

b) a,  (f      ])([ tr
fffff =∇+∇−≡ vvUP ηp        (5.2) 

where U is the spatial unit tensor and the superscript “tr” means transposition. The Stokes 

equations, Eqs. (3.3) and (3.4), are equivalent to 0f =⋅∇ P . Then, in accordance with the 

Gauss-Ostrogradsky theorem, the forces given by Eq. (5.1) can be calculated at every 

mathematical surface that together with S forms a closed surface (Faxen theorem). The 

calculations are simpler if we choose the surface z = 0 as integration domain for both forces in 

Eq. (5.1): 

∫ −−= ∞

p

0 s
,aa )2(d2

R

zzz R
pPrr σπ eF         (5.3) 

∫
∞

∞−=
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)(d2 ,bb
R

zzz pPrreF π          (5.4) 

where the values of the tensorial components Pa,zz and Pb,zz are taken at z = 0. The integration 

in Eq. (5.3) is over the cross-section of the pore at its orifice (Fig. 1), while the integration in 

Eq. (5.4) is over the flat solid surface that encircles the pore orifice. In Eqs. (5.3) and (5.4), we 

have subtracted the static pressure in the respective phase from the pressure tensor. Thus, Fa 

and Fb acquire purely hydrodynamic character, and we could seek expressions for the 

magnitudes of these forces in the form: 

mpbbbmpaaa     , vRfFvRfF ηη ==          (5.5) 
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In Eq. (5.5), Fa and Fb are expressed in the known Stokes form, however the coefficients, fa 

and fb, are, in general, different from 6π. 

 Our goal will be to derive expressions and to obtain numerical results for the friction 

coefficients fa and fb. For this goal, we express Pf,zz from Eq. (5.2), and use the continuity 

equation (3.7): 

)(122 fff
f

ff,f ru
rr

p
z

wpP zz ∂
∂

+=
∂
∂

−= ηη        (5.6) 

where (f = a, b). The radial component of the velocity at the solid surface is zero; hence, we 

have ua(r=Rp) = ub(r=Rp) = ub(r→∞) = 0. Therefore, when substituting Eq. (5.6) into Eqs. 

(5.3)–(5.4), and integrating, the last term in Eq. (5.6) gives zero contribution, and the result 

reads: 

)0(      d)2(2
p

0 s
aa =−−= ∫ ∞ zrr

R
ppF
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σπ        (5.7) 

)0(      d)(2
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∞ zrrppF
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π         (5.8) 

Finally, in Eqs. (5.7)–(5.8) we introduce dimensionless variables in accordance with Eqs. 

(3.5) and (3.6). As a result, we obtain Eq. (5.5), where the dimensionless coefficients of the 

hydrodynamic force are given by the expressions: 
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In Eq. (5.9), a
~p  and b

~p  must be estimated at z = 0.  

 To determine the pressures pa and pb in the phases ‘a’ and ‘b’, we need two boundary 

conditions. In the region ‘b’ this is the condition pb→p∞ in the bulk of phase b. To obtain the 

respective boundary condition in the phase ‘a’, we will use the Laplace equation of capillarity. 

For this goal, we present pa and pb in the form: 
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pp +≡++≡ ∞∞
σ        (5.10) 

where pa,dyn and pb,dyn are the respective dynamic contributions to the pressure. As a boundary 

condition, we will consider the force balance at the apex of the drop surface (Fig. 1), that is 

the point where the z-axis pierces the drop surface: 
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Substituting pa and pb from Eq. (5.10) into Eq. (5.11), we get: 
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where the subscript ‘ap’ denotes that the expression in the parentheses should be estimated at 

the apex of the drop surface. Further, in view of eqs (3.5), (3.6), and (5.10), we introduce 

dimensionless variables in eq (5.12): 
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For the computations, it is convenient to express a
~p  in the form: 
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where the last term in the parentheses is a constant. In fact, Eq. (5.14) represents the definition 

of a,0
~p (r). At the apex of the drop surface, Eq. (5.14) gives the boundary condition for a,0

~p : 
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In view of Eq. (5.9) and (5.14), we obtain: 
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1

0
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In Eq. (5.16), at the last step we have used Eq. (5.13). Thus, in view of Eqs. (5.5) and (5.16), 

we can express the total hydrodynamic force exerted on the drop in the form: 

mpahbah vRfFFF η=+=           (5.18) 

where 
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Numerical results and interpolation formulas for are given in section 7 below. Note, that the 

coefficients fa,0, fb and fab depend only on the contact angle, α, because of the appropriate 

scaling procedure given in Section 3. In contrast, the hydrodynamic friction coefficient, fh, is a 
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linear function of the ratio between the dynamic viscosities of phases “b” and “a”, i.e. of 

ηb/ηa, see eq. (5.19). 

 

5.2. Introduction of new variables 

 To avoid numerical problems in calculation of the pressures, pa and pb, and the friction 

coefficients, fa and fb, it is convenient to introduce new variables, Ψf and Ωf (f = a, b), as 

follows: 

z
rzrr ~2~4    , ~

2

~~ a
aaa

3

a ∂
Ω∂

+≡Ω+Ψ++−≡ ωψ       (5.21) 

z
z ~2                     , ~ b

bbbb ∂
Ω∂

≡Ω+Ψ≡ ωψ        (5.22) 

In view of Eq. (4.2), equation (5.21) defines Ψa and Ωa as deviations from the Poiseuille flow 

in the cylindrical channel of the pore, near its orifice. In addition, in terms of the new 

variables, equation (3.12) acquires a simpler form: 

b) a,  (f      0][    , 0][ ff ==Ω=Ψ LL         (5.23) 

in which both equations for Ψf and Ωf are separated one from the others. 

 Further, substituting ωa and ωb from Eqs. (5.21) and (5.22) into Eq. (3.14), and 

integrating with respect to z, we derive: 
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Eq. (5.24) satisfies the requirements to have Poiseuille flow in the depth of the channel, 

zp ~8~
a −=  for −∞→z~ , and the hydrodynamic effects to disappear in the depth of the 

continuous liquid phase, 0~
b =p  for +∞→z~ . Note that the expression for a,0

~p  in Eq. (5.24) 

satisfies the boundary condition, Eq. (5.15) 

 Finally, we substitute Eq. (5.24) into Eqs. (5.9) and (5.17) and obtain compact 

expressions for the force coefficients: 

)0,1(4    , )0,1(4 bbaa,0 Ω=Ω−= ππ ff         (5.25) 

Here )0~,1~()0,1( ff ==Ω=Ω zr  and f = a, b; to derive Eq. (5.25), we have used also the 

boundary condition Ωb(∞,0) = 0. To calculate fab, we use Eq. (5.20), where 

ap

b
apb ~4~

r
p

∂
Ω∂

−=            (5.26) 
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)cos(sin
)cos1(
sin)cos1(

~
~

ap

b ααα
αα
αα

−
−
+

=
∂
∂

−
z

w
       (5.27) 

Our next goal is to solve the hydrodynamic problem numerically and, in particular, to 

compute Ωa(1,0) and Ωb(1,0). 

 

6. Solution of the problem in curvilinear coordinates 

 

6.1. Coordinate transformations 

 It is convenient to transform the physical space, occupied by the two liquid phases, 

including the emulsion drop, into a finite rectangular domain. For this goal, we consider three 

separate domains (Fig. 2): Domain A represents the interior of the cylindrical capillary. 

Domain B is the interior of the emulsion drop. Domain C is the outer liquid phase (the 

disperse medium). 

 In the domain A, it is convenient to replace the cylindrical coordinates )~,~( zr  by 

curvilinear coordinates (x1,x2), defined as follows: 

z
zxrx ~1

~
    , ~

21 −
≡≡            (6.1) 

Thus, the domain A, which corresponds to 0 ≤ r~  ≤ 1 and −∞ ≤ z~  ≤ 0, is transformed into a 

finite rectangle, for which 0 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 0 (Fig. 2). The coordinate surfaces x1 = 

const. are vertical cylinders, while the coordinate surfaces x2 = const. are horizontal planes. 

 Because the domains B and C are separated by a spherical phase boundary (the drop 

surface), it is convenient to introduce toroidal coordinates in these two regions: 

2

2
11 sin1~    , 2~ x

h
xz

h
xr −

≡≡           (6.2) 

2
2
1

2
1 cos)1(1 xxxh −++≡           (6.3) 

In this case, the coordinate surfaces x1 = const. are toroids, while the surfaces x2 = const. are 

spheres (Fig. 2). The latter obey the equation: 

2
2

2
2

2

sin
1)cot~(~

x
xzr =++           (6.4) 

One could check that (irrespective of the value of x2) all spheres described by Eq. (6.4) are 

passing through the circumference )0~ ,1~( == zr , which is the edge at the orifice of the pore. 

The drop surface is a sphere, whose dimensionless radius is αsin/1/~
pss =≡ RRR  (Fig. 1). 

Comparing the latter result with the right-hand side of Eq. (6.4), we find that x2 = α for the 
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drop surface, which serves as boundary between the domains B and C. In addition, the 

boundary between the domains A and B corresponds to x2 = 0; see Eqs. (6.1), (6.2) and Fig. 2. 

Thus, the domain B represents a rectangle, for which 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ α, whereas for 

the domain C we have 0 ≤ x1 ≤ 1 and α ≤ x2 ≤ π. 

 The introduced curvilinear coordinates are convenient, because the boundary conditions 

are imposed on coordinate surfaces. In the next subsections we specify the form of the 

differential equations and boundary conditions for the domains A, B, and C. 

 

6.2. Domain A 

 As mentioned above, the domain A is a rectangle for which 0 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 0 

(Fig. 2). Using the curvilinear coordinates defined by Eq. (6.1), we derive: 

2

2
2

1

)1(~    , ~ x
fx

z
f

x
f

r
f

∂
∂

+=
∂
∂

∂
∂

=
∂
∂          (6.5) 

In the domain A, we can express the linear differential operator L, defined by Eq. (3.13), as 

L = L1 + L2, where 

2
111

2
1

2

1
1][

x
f

x
f

xx
ffL −

∂
∂

+
∂
∂

=           (6.6) 

2

3
22

2

2
4

22 )1(2)1(][
x
fx

x
fxfL

∂
∂

++
∂
∂

+=         (6.7) 

Note that the expression for L in the domains B and C is different; see Eqs. (6.14) and (6.15). 

The unknown functions, Ψa and Ωa, satisfy Eqs. (5.23). Our next task is to obtain the 

respective boundary conditions at the borders of the domain A. 

 At the axis of symmetry, 0~ =r , which corresponds to x1 = 0, with the help of Eqs. (4.1) 

and (5.21), we obtain: 

01  and  0at      0 21aa ≤≤−==Ω=Ψ xx         (6.8) 

 In the depth of the capillary channel, far from its orifice, −∞→z~ , x2 = −1, from Eqs. 

(4.2) and (5.21) we derive: 

1  and  10at      0 21aa −=≤≤=Ω=Ψ xx         (6.9) 

 At the solid wall of the cylindrical channel )1~( =r , corresponding to x1 = 1, with the 

help of Eqs. (4.3), (5.21), (6.1), and (6.5) we obtain: 

0
1

    , 0
1 1

a

2

2

1

a
a

2

2
a =

∂
Ω∂

+
+

∂
Ψ∂

=Ω
+

+Ψ
xx

x
xx

x        (6.10) 
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at x1 = 1 and −1 < x2 ≤ 0. Finally, the boundary condition at the border between domains A 

and B (Fig. 2) is derived in the next subsection. 

 

6.3. Domain B 

 The domain B, representing the interior of the forming drop at the opening of the 

channel, corresponds to 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ α (see Fig. 2). From the definition of the 

toroidal coordinates, Eq. (6.2), it follows that 

1

2
1

2
2

2
1

2
12

1

~

2
1~

    , ]cos)1()1[(2~

x
rx

x
zxxx

hx
r

∂
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=
∂
∂
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∂
∂      (6.11) 
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∂
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∂
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−=
∂
∂       (6.12) 

The respective metric coefficients (Lamé parameters) are: 

h
xh

h
h

2
1

21
1    , 2 −

==            (6.13) 

 With the help of Eqs. (3.13), (6.2) and (6.11)-(6.13), one can express the differential 

operator L = L1 + L2 in terms of the toroidal coordinates (x1,x2): 

f
x

h
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f

x
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x
h

x
fhfL 2

1

2

1
2
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∂
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 Two other useful relationships connect the derivatives in terms of the cylindrical and 

toroidal coordinates: 

2
2
1

21

1
2

2
1

2
1 1

sin2]cos)1()1[(
2
1

~ x
f

x
xx

x
fxxx

r
f

∂
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−
+
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∂      (6.16) 
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11(sin~ x

fx
x
x

x
fxx

z
f

∂
∂

−
+

++
∂
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−=
∂
∂        (6.17) 

Our next step is to derive the boundary conditions at the borders of the domain B. 

 At the axis of symmetry, 0~ =r , which corresponds to x1 = 0 (see Fig. 2), in view of 

Eqs. (4.1) and (5.21) we obtain: 

α≤≤==Ω=Ψ 21aa 0  and  0at      0 xx         (6.18) 

 Furthermore, at the edge of the pore, 0~,1~ == zr  (x1 = 1, 0 ≤ x2 ≤ α, see Fig. 2), that is 

at the three-phase contact line, from Eqs. (4.3) and (5.21) one deduces (see Appendix B): 
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α≤≤==Ω−
∂
Ψ∂

=Ψ 212a
1

a
a 0  and  1at      0sin    , 0 xxx

x
     (6.19) 

 The boundary between the domains A and B at x2 = 0 is formal: there is no physical 

boundary there. For this reason, the functions Ψa, Ωa, and their directional (normal) 

derivatives must be discontinuous at this boundary: 
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a
2
1002
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xx xxx
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xx

xx xxx
     (6.21) 

for every 0 ≤ x1 ≤ 1, see Eqs. (6.5) and (6.17). 

 Next, let us consider the boundary conditions at the drop surface (the oil-water 

interface), where x2 = α. Using definition (5.21), after some mathematical transformations, 

one can express boundary conditions (4.5)−(4.7) in the following form (Appendix B): 

2

~

2

~
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3
2
1aa

rrxz −−−=Ω+Ψ α         (6.22) 
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32
1

~
2

sin3~
2

sin]
cos1
cos51cos)1[( rrx αα
α
αα −

−
−

+−+    (6.23) 

where x2 = α, 0 ≤ x1 ≤ 1, and r~  and z~  are defined by Eq. (6.2). 

 

6.3. Domain C 

 In this domain, the unknown hydrodynamic functions are Ψb and Ωb. For domains B 

and C we have the same curvilinear coordinates, Eq. (6.2), and consequently, Ψb and Ωb must 
satisfy Eqs. (5.23), where the differential operator L = L1 + L2 is defined by Eqs. (6.14) and 
(6.15). At the axis of symmetry, 0~ =r , which corresponds to x1 = 0 (see Fig. 2), in analogy 
with Eq. (6.8) we obtain: 

πα ≤≤==Ω=Ψ 21bb   and  0at      0 xx         (6.24) 

 Furthermore, at the edge of the pore, 0~  , 1~ == zr  (x1 = 1, α ≤ x2 ≤ π, see Fig. 2), that is 

at the three-phase contact line, from Eqs. (4.4) and (5.22) in toroidal coordinates (6.2) one 
deduces (Appendix B): 

πα ≤≤==Ω−
∂
Ψ∂

−=Ψ 2122b
1

b
b   and  1at        cos

2
1sin    , 

2
1 xxxx

x
   (6.25) 
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 At the outer membrane wall, where 0~ =z  and x2 = π (Fig. 2), we derive the following 

boundary condition with the help of Eqs. (4.4), (5.22), (6.2), (6.3) and (6.17): 

π=≤≤=Ω−
∂
Ψ∂

−
−=Ψ 21b

2

b
2
1

2
11

b   and  10at        0
1
2    , 

2
xx

xx
xx     (6.26) 

 To derive the boundary condition at the surface of the drop (x2 = α), we transform Eqs. 

(4.5) and (4.6) with the help of definitions (5.22) in terms of the new functions Ψb and Ωb 
(Appendix B): 

2

~
]cos)1(1[~ 2

1bb
rxz α−+−=Ω+Ψ          (6.27) 
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++−+
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2
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2
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2
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h

xx
xxx
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rx ~
2

sin]
cos1
cos31cos)1[( 2

1
α

α
αα

−
+

−−+     (6.28) 

where x2 = α, 0 ≤ x1 ≤ 1, and r~  and z~  are defined by Eq. (6.2). 
 

7. Numerical results and discussion 
 
 We solved the problem numerically. The three integration domains, A, B, and C, were 

transformed into rectangles with the help of appropriate curvilinear coordinates, (x1,x2), as 

explained in section 6 (Fig. 2). The boundary conditions at the borders of each rectangle, and 

the expressions for the differential operator, L, are also given in section 6. As a result, we 

obtained numerical data for the functions Ψf(x1,x2) and Ωf(x1,x2), f = a,b. We recall, that the 

subscript ‘a’ denotes the inner (disperse) phase, while the subscript ‘b’ denotes the outer 

(continuous) phase. Next, from Eqs. (5.10) and (5.11) we determined the stream and vorticity 

functions ψf(x1,x2) and ωf(x1,x2), f = a,b. Finally, from Eq. (3.10) we calculated the radial and 

vertical components of the velocity field, ),(~
21f xxu  and ),(~

21f xxw , f = a,b. In addition, from 

Eq. (5.25)–(5.27) we determined the coefficients, fa,0, fb, and fab, which characterize the 

hydrodynamic force, Fh, that is acting on the emulsion drop; see also Eq. (5.18).  

It is worthwhile noting that the obtained numerical data for the dimensionless 

characteristics of the system (Figs. 3–6) have universal character: They depend only on the 

angle α (Fig. 1), determining the drop size relative to the pore size, but they are independent 

of the pore radius, Rp; of the mean velocity of the fluid in the channel, vm, and of the 

viscosities of the two fluid phases, ηa and ηb.  
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 As an illustration, in Figs. 3–7 we show the calculated stream function, ψ; 

dimensionless radial velocity component, vr, and dimensionless vertical velocity component, 

vz, for angles α = 30°, 60°, 90°, 120°, and 150°. The boundary between the domains A and B 

is always at x2 = 0. In Figs. 3–7, the used scale of the colors is the same, which allow one to 

compare the magnitudes of the respective quantities for the various values of α.  

 The curvilinear coordinates, (x1,x2), are convenient for the numerical calculations, but 

they are not convenient for data presentation, because they distort the shape of the emulsion 

drop. For this reason, in Fig. 8 we have recalculated the velocity profile by using polar 

coordinates with coordinate origin at the center of the sphere, representing the drop surface. 

For convenience, the velocity field, v, is plotted in Cartesian coordinates, where, as usual, the 

z-axis coincides with the axis of symmetry of the system. Figure 8a corresponds to Rs/Rp = 

1/sinα = 1.1 (α ≈ 115°), while Fig. 8b corresponds to Rs/Rp = 1.3 (α ≈ 130°). The general 

pattern of the velocity field in Fig. 8 does not show the existence of vorticity structures inside 

the drop. The flow is predominantly directed out of the pore, along the z-axis, with a 

superimposed additional radial flow, engendered by the radial expansion of the drop surface. 

We recall that the used boundary conditions at the drop surface, Eqs. (2.9) and (2.10), 

physically correspond to an oil-water interface that expands isotropically as an elastic 

membrane. Such a kinematic regime is expected when adsorbed surfactant is present at the 

interface: the surfactant gives rise to a considerable surface dilatational (Gibbs) elasticity. 

 Figures 9a and 9b show the calculated hydrodynamic-force coefficients, fa,0, fb and fab as 

universal functions of the angle α. Physically, fa,0 and fab characterizes the “pushing” force 

that originates from the inner fluid, which is ejected from the orifice of the pore. The most 

interesting results are that the dependence fa,0(α) exhibits a maximum. In other words, the 

emulsion drop, which is forming at the opening of the pore, experiences a strong pushing 

force from the side of the inner fluid, which eventually could lead to detachment of the drop 

from the membrane surface. On the other hand, the hydrodynamic force coefficient fb is 

negative, and characterizes the drag force that originates from the outer fluid and impedes the 

growth of the drop, see Eq. 5.18.  
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Appendix A. Calculation of boundary conditions (4.5) and (4.6) 

 

 From equations (2.14) and (3.10) the normal component of the velocity at the drop 

surface is presented as: 

f
ff

f ~
cos

~cos~sin~ ψθψθψθ
rrz

−
∂
∂

−
∂
∂

=⋅ vn         (A.1) 

where f = a, b. Equation (A.1) is simplified using the spherical coordinate system connected 

to the drop center, Os, with dimensionless coordinates ),~( sph θr : 

θθ cos~~~    , sin~~
sphdsph rzzrr +==          (A.2) 

In the spherical coordinates (A.2) equation (A.1) is transformed to: 

)sin(
sin~
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f
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f θψ
θθ ∂
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−=⋅
r

vn          (A.3) 

 From Eq. (3.5) the dimensionless spherical coordinate at the drop surface is equal to 

αsin/1~
sph =r . Using the expression for the normal velocity component at the drop surface, 

Eq. (2.12), equation (A.3) reduces to the following relationship: 

α
θαθ

α
αθψ

θ sin
sin)cos(cos
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cos1)sin( f −

−
+

−=
∂
∂        (A.4) 

The differential equation (A.4) is integrated with respect to the polar angle from 0 to θ and the 

result reads 

)]1(coscos
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= θαθ
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Simple mathematical calculations reduce equation (A.5) to its equivalent form: 
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−=         (A.6) 

It is important to note that the stream function (A.6) is continuous at the contact line, i.e. the 

value of ψf is equal to −1/2 at θ = α, see also Eqs. (4.3) and (4.4). 

 From equations (2.14) and (3.10) the tangential component of the velocity at the drop 

surface is calculated: 

f
ff

f ~
sin

~sin~cos~ ψθψθψθ
rrz

+
∂
∂

+
∂
∂

=⋅ vt         (A.7) 

where f = a, b. Expression (A.7) is reduced at the drop surface to [see Eq. (A.2)]: 
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=⋅
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The sum of partial derivatives in Eq. (A.8) is equal to the directional (normal) derivative of 

the stream function at the drop surface. 

 

 

Appendix B. Calculation of boundary conditions (6.19), (6.22), (6.23), (6.25), (6.27) and 

(6.28) 

 Boundary condition (6.19). If definitions (5.21) are substituted into Eq. (3.10) the 

following expressions for the velocity components are derived: 
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The velocity component in direction x2 is calculated using the metric coefficients (6.13) to be: 
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Expressions (B.1) and (B.2) are substituted into Eq. (B.3) and formulas (6.11) and (6.12) are 

used in order to obtain the relationship for the velocity component in terms of unknown 

functions Ψa and Ωa: 
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 To derive boundary condition (6.19) we apply Eq. (B.4) at the contact line, where 

1~ =r , 0~ =z  and x1 =1. From Eq. (6.12) it follows that at the contact line: 
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and the velocity component becomes: 
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The velocity of the liquid at the contact line is zero and Eq. (B.6) gives boundary condition 

(6.19). 

 Boundary condition (6.22). The substitution of Eq. (5.21) into boundary condition (4.5) 

leads to the following relationship: 
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written at x2 = α. Using Eq. (A.2) the radial and vertical coordinates at the drop surface are 

simply related to the polar angle: 
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From Eqs. (6.2) and (6.3) we can find z~  and replace it into Eq. (B.8) to obtain the cosine of 

the polar angle: 
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After equivalent mathematical transformation it can be calculated from Eq. (B.9) that: 
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 The direct substitution of Eq. (B.10) and (B.8) into boundary condition (B.7) reduces it 

to Eq. (6.22). 

 Boundary condition (6.23). The directional (normal) derivative of the stream function, 

appearing in boundary condition (4.6)-(4.7) is presented for new functions (5.21) in the 

following form: 
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From Eqs. (B.8) and (B.9) using the expressions for the derivatives 2/~ xr ∂∂  and 2/~ xz ∂∂ , i.e. 

Eqs. (6.11) and (6.12), the following representations of the trigonometric functions of the 

polar angle are derived: 
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Finally, from Eqs. (B.8), (B.9) and (B.12) the normal derivative of the stream function (B.11) 

is simplified to: 
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 The following step in calculations is to substitute the values of the stream function from 

boundary condition (4.5) into boundary condition (4.6) in order to obtain: 
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Substituting expression (B.13) into Eq. (B.14) written for the phase “a” it is derived that: 
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Using relationship (B.10) boundary condition (B.15) is transformed to the final form of the 

boundary condition, i.e. Eq. (6.23). 

 Boundary condition (6.25). If definitions (5.22) are substituted into Eq. (3.10) the 

following expressions for the velocity components are derived: 
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Expressions (B.16) and (B.17) are substituted into Eq. (B.3) and formulas (6.11) and (6.12) 

are used in order to obtain the relationship for the velocity component in terms of unknown 

functions Ψb and Ωb: 
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 To derive boundary condition (6.25) we apply Eq. (B.18) at the contact line, where 

1~ =r , 0~ =z  and x1 =1. From Eq. (6.11) it follows that at the contact line: 
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Using Eqs. (B.5) and (B.19) the velocity component, Eq. (B.18), becomes: 
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Taken into account that the velocity must be zero at the contact line equation (B.20) gives the 

following boundary condition: 
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 Boundary condition (6.27). From Eq. (B.8) the right hand side of Eq. (4.5) is 

transformed to: 
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Using relationship (B.10) equation (B.22) is simplified: 
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After simple mathematical transformation of Eq. (B.23) boundary condition (6.27) is 

calculated. 

 Boundary condition (6.28). The directional (normal) derivative of the stream function, 

appearing in boundary condition (4.6)-(4.7) is presented for new functions (5.22) in the 

following form: 
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Equation (B.24) follows directly from Eq. (B.13), in which the non-homogeneous term is 

omitted because of definition (5.22) and the phase “a” is replaced by the phase “b”. Applying 

expressions (B.8) and (B.9) to relationship (B.14) written for the phase “b” it is derived that: 
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After equivalent mathematical transformations the right hand side of Eq. (B.25) is simplified 

to obtain: 
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Equations (B.24) and (B.26) are reduced to boundary condition (6.28). 
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Fig. 1. Drop from the liquid phase ‘a’ growing at the orifice of a membrane pore. Phase ‘b’ is 

the outer liquid medium. Rp and Rs are the radii of the cylindrical pore and spherical drop 

surface. Angle α characterizes the size of the drop, while angle θ characterizes the position of 

the material points at the drop surface; vs is the surface velocity. 
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 Fig. 2. (a) Curvilinear coordinates (x1,x2) introduced in Section 6. (b) The pore interior, 

drop interior and the outer phase are transformed, respectively, into rectangular domains, A, 

B, and C. 



 25

 

 

 
Fig. 3. Calculated (a) stream function, ψ; (b) radial velocity component, vr, and vertical 
velocity component, vz, for angle α = 30°.  
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Fig. 4. Calculated (a) stream function, ψ; (b) radial velocity component, vr, and vertical 
velocity component, vz, for angle α = 60°.  
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Fig. 5. Calculated (a) stream function, ψ; (b) radial velocity component, vr, and vertical 
velocity component, vz, for angle α = 90°.  
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Fig. 6. Calculated (a) stream function, ψ; (b) radial velocity component, vr, and vertical 
velocity component, vz, for angle α = 120°.  
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Fig. 7. Calculated (a) stream function, ψ; (b) radial velocity component, vr, and vertical 
velocity component, vz, for angle α = 150°.  
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(a) 
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Fig. 8. Distribution of the vector of the velocity in the drop at different values for the ratio 

pored / RR : (а) 1.1 and (b) 1.3. 
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Fig. 9. (a) Force coefficient fa, and (b) force coefficients fb and fab, plotted vs. the angle α. 

 


