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Abstract. Here, we investigate theoretically the production of monodisperse emulsions
with the help of microporous membranes. To understand the mechanism of drop detachment
from a pore, theoretical calculations for the case without cross flow have been performed. The
Navier-Stokes equation has been solved and the fields of velocity and pressure have been
computed for the interior and exterior of oil drop, which is growing at the orifice of a pore.
The driving force of the drop detachment turns out to be the viscous stress due to the flow of
the liquid, supplied by the pore, which feeds the growing drop. For drop detachment, it is not
necessary the viscous stress to cause a violation of the force balance in the system. Instead, it
is sufficient the viscous stress to produce a deformation in the drop shape, which leads to the
appearance of a necking instability, in analogy with the case of a pendant drop. This
instability brings about the drop detachment, which corresponds to a transition from stable to
unstable equilibrium. The driving force, due to the liquid flow inside the growing drop, and

the resistance force, due to the outer fluid, are quantified.

1. Introduction

The method of membrane emulsification has found a considerable development and many
applications during the last decade. The method has been applied in many fields, in which
monodisperse emulsions are needed. An example is the application in food industry for
production of oil-in-water (O/W) emulsions: dressings, artificial milk, cream liqueurs, as well
as for preparation of some water-in-oil (W/O) emulsions: margarine and low-fat spreads.
Another application of this method is for fabrication of monodisperse colloidal particles:
silica-hydrogel and polymer microspheres; porous and cross-linked polymer particles;

microspheres containing carbon black for toners, etc. A third field of utilization is for



obtaining multiple emulsions and microcapsules, which have found applications in pharmacy
and chemotherapy. Closely related to the membrane emulsification is the method employing

capillary tubes and micro-channels to produce monodisperse emulsions.

A key problem of membrane emulsification is to explain and predict the dependence of
the drop diameter, dgrop, On the experimental parameters: pore diameter, Uyore, applied cross
flow in the continuous phase, flux of the disperse phase along the pores, viscosity of the oil
and water phases, interfacial tension and kinetics of surfactant adsorption, etc. (Here and
hereafter we call “disperse” the phase from which the drops are made, despite the fact that this
phase is continuous before the drop detachment from the membrane.) The values of the ratio
darop/pore, Teported in different experimental works, vary in the range from 2 to 10; the
reasons for this variation have not yet been well understood. Below we briefly consider the

major factors affecting the ratio darop/pore.

The flow of the disperse phase along the pores of the emulsification membrane can be
varied by controlling the pressure difference applied across the membrane. The experiments
show that typically an increase of the transmembrane flow (or of the applied pressure) results
in a greater mean drop size and in a higher polydispersity of the formed drops. Moreover, one
can distinguish two regimes of transmembrane flow: (i) fixed flow rate and (ii) fixed pressure.
The former regime takes place in the emulsification setups using a bunch of capillaries or
micro-channels, where the disperse phase is usually supplied by a pump. The second regime
is typical for the standard emulsification setups, in which the disperse phase is pushed across
the membrane by nitrogen gas from a bottle. In this case the gas plays the role of a buffer
which keeps constant the applied pressure difference across the membrane; on the other hand,

the flow rate along a given pore may oscillate when drops grow and detach at its orifice.

The oil-water interfacial tension, o, is recognized to be the major retention force, that is
the force which keeps the drops attached to the membrane surface. Greater o is expected to
cause the production of larger emulsion drops. Complications arise from the fact that, as a
rule, a surfactant (emulsifier) is dissolved in the continuous phase to stabilize the produced
emulsion against drop coalescence. Since the surfactant has a finite rate of adsorption at the
oil water interface, the coverage of the drop surface with adsorbed surfactant molecules
decreases (and the dynamic value of o increases) when the frequency of drop release from the
pores grows. The latter effect could explain, at least in part, the aforementioned rise in the

drop size with the increase of the transmembrane pressure.



Our study is aimed at revealing the hydrodynamic factors that govern the drop
detachment from the orifice of a pore. For this goal, we solve the hydrodynamic problem in
the three spatial regions: (i) inside the pore; (ii) inside the growing drop; and (iii) in the outer
liquid phase. The driving force, due to the liquid flow inside the growing drop, and the
resistance force, due to the outer fluid, are quantified. Our working hypothesis is that these
forces cause deformation of the drop surface that leads to a necking instability and drop

detachment, as it is with the pendant drops.

2. Kinematics of drop expansion

We consider the expansion of an emulsion drop, which is growing at the tip of a
capillary. Our purpose is to model the formation of drops at the openings of the pores of an
emulsification membrane. We are dealing with microscopic drops, for which the gravitational
deformation of the drop shape is negligible. Here, we consider the simpler case, in which
there is no cross-flow in the outer liquid phase; i.e. the only motion in the outer fluid is caused
by the drop formation.

Because we are dealing with small drops, we will simplify our treatment by the
assumption that the drop surface is (approximately) spherical. The membrane pore will be
modeled as a cylindrical channel, see Fig. 1. The radius of the drop surface will be denoted by
Rs, while the inner radius of the channel (pore) — by R,. To describe the process of drop
formation, we will use cylindrical coordinates (r,z), where the z-axis coincides with the axis of
rotational symmetry of the system, and the plane z = 0 coincides with the outer membrane
surface (Fig. 1).

The inner and outer liquids will be referred as “phase a” and “phase b”, respectively.
For example, “phase a” could be oil and “phase b” — water, or vice versa. Due to the
symmetry, the velocity field in the respective phase can be expressed in the form:

vV, =ue, +we,, Vv, =ue +we, (2.1)
where e; and e; are the unit vectors of the respective axes. Inside the channel, far from its

orifice, we have Poiseuille flow of the inner liquid:
2
u =0, Wa=2vm(l—%) for 0ST<R and z—>—o0 2.2)

a
p

Here vy, is the mean velocity, and the subscript “a” denotes the inner liquid phase. The flow

rate, Q, of the inner liquid is:



dv
Q=7zR)v, it (2.3)

where V is the volume of the growing drop and t is time. The volume, V, can be expressed in

the form:

7R’
v =T ZHeosa g, (2.4)
3 (l+cosa)

where the angle « is shown in Fig. 1. The differentiation of Eq. (2.4), in view of Eq. (2.3),
yields:
da Vv )
—=—"-(+cos 2.5
it "R ( ) (2.5)

p

The time derivative of the drop radius is:

dR R
S — i - p ) — _Vm 1—i_cﬂcoscz (26)
dt dt sina l1-cosa

Likewise, for the z-coordinate of the drop center, z,, we obtain:

2.7)

We will assume that the relative motion of the material points on the drop surface
corresponds to an isotropic surface expansion. Physically, this corresponds to the case when
adsorbed surfactant molecules are present at the interface, and the latter behaves as an elastic
membrane owing to the considerable surface (Gibbs) elasticity. For isotropic interfacial
expansion, we have 8/a = s = constant, where @ is the polar coordinate of a given surface
material point (Fig. 1). Let us denote by (Is,Zs) the coordinates of a material point on the drop
surface with respect to the immobile cylindrical coordinate system bound to the channel of the
pore (Fig. 1). Then, we obtain:

r.=R sin(sa), z,=12,+R, cos(sa) (2.8)
The differentiation of Eq. (2.8) at fixed s, along with Egs. (2.5)—(2.7), yields the radial and

axial resultants of the surface velocity:

dr

u =—>== mM(Scosﬁsina—sinecosa) (2.9)
dt 1-cosa
dz

=—=y 1+COsa(l—ssiné’sinoz—cosé’cosox) (2.10)
dt 1-cosa

Further, with the help of Egs. (2.9) and (2.10), and the relationship

vV, =Uge, +we, (2.11)



we deduce expressions for the normal and tangential projections of the surface velocity with

respect to the drop surface:

n-v, =le+cﬂ(cose—cosa) (2.12)
l—-cosa

tov, =y LFOO (g —sing) (2.13)
l-cosa

where n and t are the running unit normal and tangent to the drop surface (Fig. 1):

n=e, sind+e,cosd, t=e cosd—e,sinf (2.14)

3. Basic hydrodynamic equations
During membrane emulsification, the typical process of drop detachment occurs at

small values of the Reynolds number. To check that, we present Eq. (2.3) in the form:
4
JZR;Vm zgﬂRj/At (3.1)

where At is the period of drop formation and Ry is the radius of the detached drops. Then, the

Reynolds number could be estimated as:

v_R 3
— p m- p ~ 410 Rd (32)
n 3n R At

Re

Substituting typical parameter values: density p= 1 g/cm’; dynamic viscosity 7= 0.01 poises,
At = 0.1 s; Rq = 3R, and R, < 20 pm, from Eq. (3.2) we obtain Re = 0.14. Hence, the
Reynolds number is small and the classical Stokes equations can be used to describe the flow
in the inner and outer liquid phases:

Vv, =0, Vp, =7V, (3.3)

Vv, =0, Vp, =71V, (3.4)
where V is the spatial gradient operator; as usual p, v, and 7 stand for pressure, velocity, and
dynamic viscosity; the subscripts “a” and “b” denote quantities related to the inner and outer

liquid phases, respectively. It is convenient to introduce dimensionless variables, denoted by

tilde, as follows:

r=RT, z=R7Z, v, =v, V, , v, =V, V| (3.5)
20— navm N ?7 Vm N

pa = poo + + pa ’ pb = poo + > pb (36)
R, R, R,



where p, is the equilibrium bulk pressure in the outer phase far from the forming drop; o is
the oil/water interfacial tension. With the help of Egs. (2.1), (3.5) and (3.6), we bring Egs.
(3.3) and (3.4) in the form:

1o ... OW

——FU)+—L=0 3.7

¥ or 0) 07 SR

o 1o __ . 00 0p

—[———(ru + =— 3.8

ar[r ar( ol 07> oF SR
~ 2~ ~

10 (Fc’iwf)+a W, 0p; (3.9)

ror or’ a7* a7
where f = a, b. Equations (3.7)—(3.9), along with the respective boundary conditions (see
below) form a system of equations for determining P;, U; =u;/v,,, and W, =w, /v, . To
obtain separate equations for the separate unknown variables, we will use a standard
hydrodynamic approach, viz. we will introduce the dimensionless stream function, 4, and

vorticity function, wy, as follows:

- oy ~ 1 0 .
u, = , W, =————(T 3.10
Py £ F@F( W) ( )
ou, oW,
= — f=a,b 3.11
@y 57 of (f=a,b) ( )

In view of Eq. (3.10), the continuity equation, Eq. (3.7), is automatically satisfied. In addition,
from Eqgs (3.8) and (3.9) we obtain:

Uy l=o,, Ue]=0 (f=ab) (3.12)
where the linear operator, L, is defined as
o.10 o f
L[fl=—[——( )]+ 3.13
[f] ar[? a?( )] 577 (3.13)

The pressure P, is related to the vorticity, @r. To derive this relationship, we first substitute
OW; /07 from Eq. (3.7) into Eq. (3.9), and next, we apply the definition of wrin Eq. (3.11):

op, 1o
=——— (7 f=ab 3.14
T ?a?( w;) (f=ab) (3.14)

4. Boundary conditions
An important step in the modeling of the drop expansion is to transform the

hydrodynamic boundary conditions in the terms of stream and vorticity functions.



(a) At the axis of symmetry, T =0, the radial velocity, U, and the curl of the fluid flow
must be zero, irrespective of the value of z. Then, from Egs. (3.10) and (3.11) one obtains:
v, =0, =0 atT=0 (f=a,b) 4.1
(b) Inside the channel of the pore, far from its orifice, we have Poiseuille flow with a
parabolic velocity profile given by Eq. (2.2). Then, from Egs. (2.2), (3.10) and (3.11) we
derive:
. - - -
y/az—r+7, w,=4F at 0<F<land 7 —> - (4.2)
(c) Next, at the solid wall of the cylindrical pore channel (T =1, see Fig. 1) we must
have u, = w, = 0. Substituting ¥ =1 in Eq. (4.2) we get v, = —1/2. Further, we substitute the

latter results in the expression for W, in Eq. (3.10) to derive:

1 0 1 - -
l//az—E, %zg for T=1and Z<0 (4.3)
Likewise, we have U, = Wy = 0 at the solid surface Z=0 for T >1, which represents the
boundary of the membrane with the outer fluid (Fig. 1). For this boundary, we obtain:
L v
T 07

=0 atF>land Z=0 4.4)

Here we have used the fact that the substitution of y4, oc 1/7 into Eq. (3.10) yields W; = 0;

the constant of proportionality is determined from the condition y, = y, = —1/2 at T =1, see
Eq. (4.3).

(d) At the drop surface we impose the kinematic boundary condition n-v, = n-v, =
n-v,, where n-v_ is given by Eq. (2.12). From these relationships, we derive (Appendix A):

v, =y, = _1(1 _ 2cosa ) 1+cosa S.m 4 (at drop surface) 4.5)
2 l1+cos@ 1-cosa sina

As discussed after Eq. (2.7), here we treat the expanding drop surface as an expanding elastic
membrane. In this case, we should have also equal tangential components of the velocities at
the interface: t-v_ = t-v, = t-v_ (no slip boundary condition), where t-Vv_ is given by Eq.
(2.13). From these equations the following boundary condition of the Neumann type for the
stream function is derived (Appendix A):

oy +y,sina = M(s sina —sin @) (at drop surface) (4.6)
on l-cosa

where f= a, b. The directional derivative is:



8ﬂ:n-vl//fzsin@al/:f +cos€al/: (4.7)
on or 07

In view of Egs. (4.5) and (4.6), the problem is split to two separate boundary problems in

phases “a” and “b”.
5. Hydrodynamic force acting on the emulsion drop

5.1. Integral expressions
The hydrodynamic force, F, acting on the drop surface, S, is a difference of

contributions from phases “a” and “b”, F, and Fy, respectively:

F,=[dsn-P,, F,=—[dsn-P, (5.1)
S S

where N is an outer normal to the drop surface. In Eq. (5.1), the pressure tensors, P, and Py,
obey the Newton’s law for a viscous fluid:

P, = p,U—7n[VVv, +(VVv,)"] (f=a,b) (5.2)
where U is the spatial unit tensor and the superscript “tr” means transposition. The Stokes
equations, Egs. (3.3) and (3.4), are equivalent to V-P; =0. Then, in accordance with the
Gauss-Ostrogradsky theorem, the forces given by Eq. (5.1) can be calculated at every
mathematical surface that together with S forms a closed surface (Faxen theorem). The

calculations are simpler if we choose the surface z = 0 as integration domain for both forces in

Eq. (5.1):

RF

F,=2ze,[drr(P, —p, _29, (5.3)
0 ’ RS

F,=2re, [drr(P,, —p,) (5.4)
R

where the values of the tensorial components P, and Py, are taken at z = 0. The integration
in Eq. (5.3) is over the cross-section of the pore at its orifice (Fig. 1), while the integration in
Eq. (5.4) is over the flat solid surface that encircles the pore orifice. In Egs. (5.3) and (5.4), we
have subtracted the static pressure in the respective phase from the pressure tensor. Thus, F,
and F, acquire purely hydrodynamic character, and we could seek expressions for the
magnitudes of these forces in the form:

Fa = fanaR v Fb = fbanpvm (55)

p'm>



In Eq. (5.5), F, and Fy, are expressed in the known Stokes form, however the coefficients, f,
and fy, are, in general, different from 67.

Our goal will be to derive expressions and to obtain numerical results for the friction
coefficients f, and f,. For this goal, we express Ps; from Eq. (5.2), and use the continuity
equation (3.7):

f

ow
P.,=p; -2
f,zz pf 77f az

1 0
=p; +2n, ———(ru 5.6
P Ufrar( r) (5.6)

where (f = a, b). The radial component of the velocity at the solid surface is zero; hence, we
have U,(r=R;) = uy(r=Rp) = Uy(r—>w) = 0. Therefore, when substituting Eq. (5.6) into Egs.

(5.3)—(5.4), and integrating, the last term in Eq. (5.6) gives zero contribution, and the result

reads:
R, 2
Fa:2ﬁj(pa—pw—R—6)rdr (z=0) (5.7)
0 s
F, =27 [(p,—prdr (z=0) (5.8)
RF

Finally, in Egs. (5.7)—~(5.8) we introduce dimensionless variables in accordance with Egs.
(3.5) and (3.6). As a result, we obtain Eq. (5.5), where the dimensionless coefficients of the

hydrodynamic force are given by the expressions:
1 ©
f :2ﬂJ53FdF, f, :2;zjmdr (5.9)
0 1

In Eq. (5.9), p, and P, must be estimated at z = 0.

To determine the pressures p, and p, in the phases ‘a’ and ‘b’, we need two boundary
conditions. In the region ‘b’ this is the condition p,—>Ps in the bulk of phase b. To obtain the
respective boundary condition in the phase ‘a’, we will use the Laplace equation of capillarity.
For this goal, we present p, and py in the form:

20
P. = P +R_+ pa,dyn > Pp =P t pb,dyn (510)

S
where Pagyn and Py ayn are the respective dynamic contributions to the pressure. As a boundary
condition, we will consider the force balance at the apex of the drop surface (Fig. 1), that is

the point where the z-axis pierces the drop surface:

2 ow, ow,
—“+(pb—2nb—bj =[pa—2na J (5.11)
ap ap

R 0z 0z



Substituting p, and p, from Eq. (5.10) into Eq. (5.11), we get:

ow ow
L -2 . 5.12
(pb,dyn My 0z jap (pa,dyn 7, 01 jap ( )

where the subscript ‘ap’ denotes that the expression in the parentheses should be estimated at

the apex of the drop surface. Further, in view of eqs (3.5), (3.6), and (5.10), we introduce

dimensionless variables in eq (5.12):

oW, oW
~ _9 b _ ~ _9 a 513
Ub[ Py _87 lp 77{ Pa o7 ]ap ( )

For the computations, it is convenient to express P, in the form:

~ ~ 0w
Pa(r) = |f>a,o(r)+(loa -2 a;J (5.14)
ap

where the last term in the parentheses is a constant. In fact, Eq. (5.14) represents the definition

of P, (r). At the apex of the drop surface, Eq. (5.14) gives the boundary condition for P, :

oW
& B 5.15
pa,O ap a,z, a ( )
In view of Eq. (5.9) and (5.14), we obtain:
fa:fa0+ﬂ- ﬁa_zavf\@ = faO+77_b7Z- ﬁb_ % (516)
’ 07 oo, 07
ap ap

1
where f ;= 27[] Pao FdF (5.17)

0

In Eq. (5.16), at the last step we have used Eq. (5.13). Thus, in view of Egs. (5.5) and (5.16),

we can express the total hydrodynamic force exerted on the drop in the form:

F,=F, +F, = fnRv, (5.18)
where
f, = fa,o<a>+Z—"[fb<a)+ (@) (5.19)
oW
f o=xp —2—2 5.20
ab ﬂ-[ pb a? jap ( )

Numerical results and interpolation formulas for are given in section 7 below. Note, that the
coefficients f,, f, and f,, depend only on the contact angle, «, because of the appropriate

scaling procedure given in Section 3. In contrast, the hydrodynamic friction coefficient, fy, is a

10



linear function of the ratio between the dynamic viscosities of phases “b” and “a”, i.e. of

M/ 17, see eq. (5.19).

5.2. Introduction of new variables
To avoid numerical problems in calculation of the pressures, p, and py, and the friction

coefficients, f, and fy, it is convenient to introduce new variables, ¥; and Q¢ (f = a, b), as

follows:
7 _ .00
w, =-T +r—+‘Pa+7Qa, 0, =47 +2—= (5.21)
2 07
- 0Q
v, =¥, +7Q,, w, =2 8Nb (5.22)
Z

In view of Eq. (4.2), equation (5.21) defines ¥, and €2, as deviations from the Poiseuille flow
in the cylindrical channel of the pore, near its orifice. In addition, in terms of the new
variables, equation (3.12) acquires a simpler form:

L[¥;1=0, L[Q;]=0 (f=a,b) (5.23)
in which both equations for ¢ and Q) are separated one from the others.

Further, substituting @, and @, from Egs. (5.21) and (5.22) into Eq. (3.14), and

integrating with respect to z, we derive:

- .20 20
=87-2(FQ,), P,=——-—o(TQ 5.24
Pao = 8F( a)s Py = aF( b) (5.24)

Eq. (5.24) satisfies the requirements to have Poiseuille flow in the depth of the channel,

p, =—87 for 7 —» —o, and the hydrodynamic effects to disappear in the depth of the
continuous liquid phase, P, =0 for Z — +o0. Note that the expression for P, in Eq. (5.24)

satisfies the boundary condition, Eq. (5.15)

Finally, we substitute Eq. (5.24) into Egs. (5.9) and (5.17) and obtain compact
expressions for the force coefficients:

foo=—47Q,01,0), f,=47Q,(,0) (5.25)
Here Q,(1,0)=Q,(F=1,Z=0) and f = a, b; to derive Eq. (5.25), we have used also the
boundary condition Qy(20,0) = 0. To calculate f,,, we use Eq. (5.20), where

0y

w o

(5.26)

11



_OW, | (I+cosa)sina

— (sina —acosa) (5.27)
07 |qap (I-cosa)a

Our next goal is to solve the hydrodynamic problem numerically and, in particular, to

compute Q,(1,0) and Q(1,0).

6. Solution of the problem in curvilinear coordinates

6.1. Coordinate transformations

It is convenient to transform the physical space, occupied by the two liquid phases,
including the emulsion drop, into a finite rectangular domain. For this goal, we consider three
separate domains (Fig. 2): Domain A represents the interior of the cylindrical capillary.
Domain B is the interior of the emulsion drop. Domain C is the outer liquid phase (the
disperse medium).

In the domain A, it is convenient to replace the cylindrical coordinates (F,Z) by

curvilinear coordinates (X;,X;), defined as follows:

XIEF, X2 EE (61)

Thus, the domain A, which corresponds to 0 < ¥ <1 and —o < 7 <0, is transformed into a

finite rectangle, for which 0 < x; < 1 and —1 < X; < 0 (Fig. 2). The coordinate surfaces X; =

const. are vertical cylinders, while the coordinate surfaces X, = const. are horizontal planes.
Because the domains B and C are separated by a spherical phase boundary (the drop

surface), it is convenient to introduce toroidal coordinates in these two regions:

2

o 2% o 1=Xxp .

r=—, 7= sin X 6.2
. . > (6.2)

h=1+x7 +(1-X/)cosX, (6.3)

In this case, the coordinate surfaces X; = const. are toroids, while the surfaces X, = const. are

spheres (Fig. 2). The latter obey the equation:

T2 +(Z+cotx,)’ =

2 (6.4)
sin” X,

One could check that (irrespective of the value of x,) all spheres described by Eq. (6.4) are

passing through the circumference (¥ =1,Z =0), which is the edge at the orifice of the pore.
The drop surface is a sphere, whose dimensionless radius is §S =R,/R, =1/sina (Fig. 1).

Comparing the latter result with the right-hand side of Eq. (6.4), we find that X, = « for the

12



drop surface, which serves as boundary between the domains B and C. In addition, the
boundary between the domains A and B corresponds to X, = 0; see Egs. (6.1), (6.2) and Fig. 2.
Thus, the domain B represents a rectangle, for which 0 < x; < 1 and 0 < X, < @, whereas for
the domain Cwehave 0<x;<land <X < m

The introduced curvilinear coordinates are convenient, because the boundary conditions
are imposed on coordinate surfaces. In the next subsections we specify the form of the

differential equations and boundary conditions for the domains A, B, and C.

6.2. Domain A
As mentioned above, the domain A is a rectangle for which 0 < x; <1 and -1 <x; <0
(Fig. 2). Using the curvilinear coordinates defined by Eq. (6.1), we derive:
of oOf of

of
, —=(1+x,)— (6.5)
07 27 ox,

or  0Xx
In the domain A, we can express the linear differential operator L, defined by Eq. (3.13), as

L=L,+ L,, where

o’f 1of f
L[f]= +— 6.6
1] x> X, 0% X (66)
2
Lz[f]:(l+x2)“—a 2+2(1+x2)3 of (6.7)
0X; 0X,

Note that the expression for L in the domains B and C is different; see Egs. (6.14) and (6.15).
The unknown functions, ¥, and €,, satisfy Eqs. (5.23). Our next task is to obtain the
respective boundary conditions at the borders of the domain A.
At the axis of symmetry, T =0, which corresponds to X; = 0, with the help of Egs. (4.1)
and (5.21), we obtain;
Y, =Q =0 at x,=0 and -1<x,<0 (6.8)
In the depth of the capillary channel, far from its orifice, Z - —, X, = —1, from Egs.
(4.2) and (5.21) we derive:
Y, =Q,=0 at 0<x, <1 and X, =-1 (6.9)
At the solid wall of the cylindrical channel (T =1), corresponding to X; = 1, with the
help of Egs. (4.3), (5.21), (6.1), and (6.5) we obtain:

¥ Q
o -0, St % 09 (6.10)
oX, 1+X, 0%

X2
1+X,

Y +

a
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at x; = 1 and —1 < X, < 0. Finally, the boundary condition at the border between domains A

and B (Fig. 2) is derived in the next subsection.

6.3. Domain B
The domain B, representing the interior of the forming drop at the opening of the
channel, corresponds to 0 < x; <1 and 0 < x; < « (see Fig. 2). From the definition of the

toroidal coordinates, Eq. (6.2), it follows that

—=—[0-X)+({A+X")cosX,], = 6.11
L L 6.11)
o _ 2 (-x}sinx,, L= 2 OF (6.12)
0X, h OX, 1-x 0X,
The respective metric coefficients (Lamé parameters) are:
2 1-x;
hlzﬁ, h, = hl (6.13)

With the help of Egs. (3.13), (6.2) and (6.11)-(6.13), one can express the differential
operator L =L; + L, in terms of the toroidal coordinates (X;,X»):
B h* o f h? xh of h?

= — +(——— —_
4 ox; (4x1 1—x12)6xl 4x;

L[f] f (6.14)
h> o8*f hsinx, of

+
(1-x7)> 0x;  1-x; 0Xx,

Lz[f]:

(6.15)

Two other useful relationships connect the derivatives in terms of the cylindrical and

toroidal coordinates:

of 1 of 2x sinx, Of

—— =—J1=x)+ 1+ x*)cos X + = 2 6.16
o Rl xDeosx o = (6.16)
of of + X2 of

— =—X,sinX, —+(1+ L cosXx,)— 6.17
o7 = gyt Taeesn); (1

1 1 2
Our next step is to derive the boundary conditions at the borders of the domain B.

At the axis of symmetry, T =0, which corresponds to x; = 0 (see Fig. 2), in view of
Egs. (4.1) and (5.21) we obtain:

Y, =Q =0 at x,=0and 0<X, <« (6.18)

Furthermore, at the edge of the pore, T =1,Z=0 (X; =1, 0 < X, < a, see Fig. 2), that is

at the three-phase contact line, from Egs. (4.3) and (5.21) one deduces (see Appendix B):
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oY .
Y, =0, 5 £—-Q, sinX, =0 at X, =land 0<X, <« (6.19)
Xl

The boundary between the domains A and B at X, = 0 is formal: there is no physical
boundary there. For this reason, the functions ¥, €, and their directional (normal)

derivatives must be discontinuous at this boundary:

B Pl \Pa 3 2 0 lPa (6 20)
a1x,=0-0 lg=0+0 0 X, X, =0-0 1- Xl2 0 X3 X, =0+0 |
ol = ., S o2 0% (@21
X, =0-0 %, =0+0 0 X2 X, =0-0 1- X 0 X2 X, =0+0

for every 0 < x; <1, see Egs. (6.5) and (6.17).
Next, let us consider the boundary conditions at the drop surface (the oil-water
interface), where X, = . Using definition (5.21), after some mathematical transformations,

one can express boundary conditions (4.5)—(4.7) in the following form (Appendix B):

~ =3

¥ 4170, =[1—(1—X12)cosa]%—% (6.22)
h > oY, JrsinocaQa +[(1—X12)+(1+Xf)cosoc]Qa =sina1+cﬂs+
1-X 0X, 0X, h l-cosa
+[(l_xlz)COSOhL1—5cosoz]smaF_3»sm0:F3 (6.23)
l-cosa = 2 2

where X, =, 0<x;<1,and 7 and 7 are defined by Eq. (6.2).

6.3. Domain C

In this domain, the unknown hydrodynamic functions are ¥}, and Q. For domains B
and C we have the same curvilinear coordinates, Eq. (6.2), and consequently, ¥}, and €y, must
satisfy Egs. (5.23), where the differential operator L = L; + L, is defined by Egs. (6.14) and
(6.15). At the axis of symmetry, ' =0, which corresponds to x; = 0 (see Fig. 2), in analogy
with Eq. (6.8) we obtain:

Y, =Q,=0 at x,=0and a<x,<rx (6.24)

Furthermore, at the edge of the pore, T =1, Z=0 (X; = 1, @ < X; < 7, see Fig. 2), that is
at the three-phase contact line, from Egs. (4.4) and (5.22) in toroidal coordinates (6.2) one
deduces (Appendix B):

1 0¥,

. 1
Y, =3 ox, —Q, sinX, :ECOSX2 at X, =l and a<x,<rx (6.25)
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At the outer membrane wall, where Z =0 and X, = 7 (Fig. 2), we derive the following
boundary condition with the help of Egs. (4.4), (5.22), (6.2), (6.3) and (6.17):

2
w=- X 25 M g L0 atosx<landx, =7 (6.26)
1-X~ 0X,

To derive the boundary condition at the surface of the drop (X, = &), we transform Eqgs.
(4.5) and (4.6) with the help of definitions (5.22) in terms of the new functions ¥}, and
(Appendix B):

¥ o+70, =—[1+(1—X12)c0sa]% (6.27)
h > oY, JrsinaaQb +[(1—Xf)+(l+xf)cosa]&=1+Cﬂ3sina+
1-x 0X, 0X, h l-cosa

H(1= X )cosq — 2008 SING (6.28)
I-cosa = 2

where X, =, 0<X; < 1,and I and 7 are defined by Eq. (6.2).

7. Numerical results and discussion

We solved the problem numerically. The three integration domains, A, B, and C, were
transformed into rectangles with the help of appropriate curvilinear coordinates, (X;,X2), as
explained in section 6 (Fig. 2). The boundary conditions at the borders of each rectangle, and
the expressions for the differential operator, L, are also given in section 6. As a result, we
obtained numerical data for the functions Wi(X;,X2) and Qg(X1,X;), f = a,b. We recall, that the
subscript ‘a’ denotes the inner (disperse) phase, while the subscript ‘b’ denotes the outer
(continuous) phase. Next, from Eqgs. (5.10) and (5.11) we determined the stream and vorticity
functions wr(X1,X2) and g(X;,X2), f = a,b. Finally, from Eq. (3.10) we calculated the radial and
vertical components of the velocity field, U;(X,,X,) and W, (X, X,), f=a,b. In addition, from
Eq. (5.25)~(5.27) we determined the coefficients, f,o, f, and fu, which characterize the

hydrodynamic force, Fy, that is acting on the emulsion drop; see also Eq. (5.18).

It is worthwhile noting that the obtained numerical data for the dimensionless
characteristics of the system (Figs. 3—6) have universal character: They depend only on the
angle « (Fig. 1), determining the drop size relative to the pore size, but they are independent
of the pore radius, R,; of the mean velocity of the fluid in the channel, vy, and of the

viscosities of the two fluid phases, 7, and 7.
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As an illustration, in Figs. 3-7 we show the calculated stream function, y;
dimensionless radial velocity component, vV, and dimensionless vertical velocity component,
v;, for angles a = 30°, 60°, 90°, 120°, and 150°. The boundary between the domains A and B
is always at X, = 0. In Figs. 3—7, the used scale of the colors is the same, which allow one to

compare the magnitudes of the respective quantities for the various values of a.

The curvilinear coordinates, (X;,X»), are convenient for the numerical calculations, but
they are not convenient for data presentation, because they distort the shape of the emulsion
drop. For this reason, in Fig. 8 we have recalculated the velocity profile by using polar
coordinates with coordinate origin at the center of the sphere, representing the drop surface.
For convenience, the velocity field, v, is plotted in Cartesian coordinates, where, as usual, the
z-axis coincides with the axis of symmetry of the system. Figure 8a corresponds to Ry/R, =
I/sina = 1.1 (a = 115°), while Fig. 8b corresponds to R/R, = 1.3 (a = 130°). The general
pattern of the velocity field in Fig. 8 does not show the existence of vorticity structures inside
the drop. The flow is predominantly directed out of the pore, along the z-axis, with a
superimposed additional radial flow, engendered by the radial expansion of the drop surface.
We recall that the used boundary conditions at the drop surface, Egs. (2.9) and (2.10),
physically correspond to an oil-water interface that expands isotropically as an elastic
membrane. Such a kinematic regime is expected when adsorbed surfactant is present at the

interface: the surfactant gives rise to a considerable surface dilatational (Gibbs) elasticity.

Figures 9a and 9b show the calculated hydrodynamic-force coefficients, f,, f, and f,, as
universal functions of the angle «. Physically, f,o and f,, characterizes the “pushing” force
that originates from the inner fluid, which is ejected from the orifice of the pore. The most
interesting results are that the dependence f,o(«) exhibits a maximum. In other words, the
emulsion drop, which is forming at the opening of the pore, experiences a strong pushing
force from the side of the inner fluid, which eventually could lead to detachment of the drop
from the membrane surface. On the other hand, the hydrodynamic force coefficient f, is
negative, and characterizes the drag force that originates from the outer fluid and impedes the

growth of the drop, see Eq. 5.18.
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Appendix A. Calculation of boundary conditions (4.5) and (4.6)

From equations (2.14) and (3.10) the normal component of the velocity at the drop
surface is presented as:

Oy, cosf
oF t

n'szsinG%—cose (A.1)
Z

where f = a, b. Equation (A.1) is simplified using the spherical coordinate system connected

to the drop center, Os, with dimensionless coordinates (T, ,6):

= n SING, 7=7,+ Fsph cos@ (A.2)

In the spherical coordinates (A.2) equation (A.1) is transformed to:

n-v,=- ! i(1//f sin &) (A.3)

T, sind o0

From Eq. (3.5) the dimensionless spherical coordinate at the drop surface is equal to

I, =1/sina . Using the expression for the normal velocity component at the drop surface,

Eq. (2.12), equation (A.3) reduces to the following relationship:

i(1//f sinf) = —w(cosﬁ—cos ) s‘1nt9
o0 1-cosax sin

(A4)

The differential equation (A.4) is integrated with respect to the polar angle from 0 to & and the

result reads

2 J—
W,sin@ = .1 1+cosa[cos 0 1—cosoz(cosé?—l)] (A.5)
sina 1—cosa 2

Simple mathematical calculations reduce equation (A.5) to its equivalent form:

11+cosa siné 2cosa
=—= —(1- ) (A.6)
21-cosa sina 1+cos@

Ve

It is important to note that the stream function (A.6) is continuous at the contact line, i.e. the
value of yris equal to —1/2 at = a, see also Egs. (4.3) and (4.4).
From equations (2.14) and (3.10) the tangential component of the velocity at the drop

surface 1s calculated:

t-V, :cosé’al/:f +sin¢98y/~f +SIEH . (A7)
07 or r
where f = a, b. Expression (A.7) is reduced at the drop surface to [see Eq. (A.2)]:
t-V, =Sin08—l/:f+C0396—l/:f+l//f sina (A.8)

z
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The sum of partial derivatives in Eq. (A.8) is equal to the directional (normal) derivative of

the stream function at the drop surface.

Appendix B. Calculation of boundary conditions (6.19), (6.22), (6.23), (6.25), (6.27) and
(6.28)

Boundary condition (6.19). If definitions (5.21) are substituted into Eq. (3.10) the
following expressions for the velocity components are derived:

0 - oY, _0Q

a —+7—=+Q, (B.1)
07 07

OF, 7% Ly 130 )+20-77 (B.2)
or or r

W, =

The velocity component in direction X; is calculated using the metric coefficients (6.13) to be:

- h or _ h 07 _
V.-e, = W f=a,b B.3
P lexax, T 1=x] X, ( ) ®-3)

Expressions (B.1) and (B.2) are substituted into Eq. (B.3) and formulas (6.11) and (6.12) are
used in order to obtain the relationship for the velocity component in terms of unknown
functions ¥, and Q,:

< h oY, _0Q hor

V,-,=—— +7Z =)+
v 2(8xl 6x1) 20x,

07—t sza-1%%0 (B4
r 20

1

To derive boundary condition (6.19) we apply Eq. (B.4) at the contact line, where
r =1, Z=0 and x; =1. From Eq. (6.12) it follows that at the contact line:
z 4x, . .
S—Xz—h—;sm X, > —sinx, at X, —>1 (B.5)
1
and the velocity component becomes:
< oY .
V,-e,=——""+Q,sinX, at X =1 (B.6)
0X,
The velocity of the liquid at the contact line is zero and Eq. (B.6) gives boundary condition
(6.19).
Boundary condition (6.22). The substitution of Eq. (5.21) into boundary condition (4.5)

leads to the following relationship:

~3 .
‘Pa+?Qa=F—r——l(l— 2cosa)1+cosa s.1n6? (B.7)
2 2 l1+cos@ 1—cosa sina
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written at X, = a. Using Eq. (A.2) the radial and vertical coordinates at the drop surface are
simply related to the polar angle:

sin @ oy cosﬁ.— cosa (B.3)
sina

r=

sino

From Egs. (6.2) and (6.3) we can find Z and replace it into Eq. (B.8) to obtain the cosine of

the polar angle:
2 2 2
cosf = 5 ! Xlz sin205+cosoz:1 X12+(1+X12)cosa (B.9)
I+ X +(1-X)cosa 1+ X +(1-X)cosa

After equivalent mathematical transformation it can be calculated from Eq. (B.9) that:

Ireosa 1 2t (-x)cosa] (B.10)

l+cos@ 2

The direct substitution of Eq. (B.10) and (B.8) into boundary condition (B.7) reduces it
to Eq. (6.22).

Boundary condition (6.23). The directional (normal) derivative of the stream function,
appearing in boundary condition (4.6)-(4.7) is presented for new functions (5.21) in the

following form:

=2
%:(L—l)sineﬂla cos9+sin96\I:a +00sf—"+
on 2 or 07
+7(sin 022 1 cos0 2% (B.11)
or 01

From Egs. (B.8) and (B.9) using the expressions for the derivatives 67 /0x, and 0Z/0x,, i.e.

Egs. (6.11) and (6.12), the following representations of the trigonometric functions of the
polar angle are derived:

hza_r and COS@=L62

sind = S
1-X 0X, 1-X 0X,

(B.12)

Finally, from Egs. (B.8), (B.9) and (B.12) the normal derivative of the stream function (B.11)

is simplified to:

~3 _ 2 2
Wa gina3r gy L2 e x)eosa,  h rsing O (B.13)

on 2 1+x +(1-x)cosa ' 1-X OX, OX,

a

The following step in calculations is to substitute the values of the stream function from
boundary condition (4.5) into boundary condition (4.6) in order to obtain:

Ve ssing — (L 4+—S0S% yIFCosa & poab) (B.14)
on l-cosa 2 1+cosf@ 1-cosa

oy, l+cosa

Substituting expression (B.13) into Eq. (B.14) written for the phase “a” it is derived that:
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h 5 oY, +sin0(6gZa +[1=x} +(1+ X )cosa]—2 :_3smaF3 +
1-X; 0X, 0X,
+1+cosa5sina—sina[(l+ cosa 1JFCOSOC—I]F (B.15)
1-cosa 2 1+cosf@ 1-cosa

Using relationship (B.10) boundary condition (B.15) is transformed to the final form of the
boundary condition, i.e. Eq. (6.23).
Boundary condition (6.25). If definitions (5.22) are substituted into Eq. (3.10) the

following expressions for the velocity components are derived:

Hbzaq:bjtfa%’jtﬂb (B.16)
017

- oY, .0Q, 1 -

W =— +7—)——(¥, +7Q B.17

b (aF aF) F( b v) (B.17)

Expressions (B.16) and (B.17) are substituted into Eq. (B.3) and formulas (6.11) and (6.12)
are used in order to obtain the relationship for the velocity component in terms of unknown
functions ¥y and Qy:

~ h 8‘Pb+NéQb h or h oz

V, e, =—— 7I—2)———(Y, +7Q,))————Q B.18
° Z(axl 6xl) 2F6xl( ° ) 20x (B.18)

To derive boundary condition (6.25) we apply Eq. (B.18) at the contact line, where
r =1, Z=0 and x; =1. From Eq. (6.11) it follows that at the contact line:

.
—— —>CosX at X, > 1 B.19
ox, > | (B.19)

Using Egs. (B.5) and (B.19) the velocity component, Eq. (B.18), becomes:
< oY,

V,-e,= oy —¥, cosx,+€Q, sinX, at X, —>1 (B.20)
1

Taken into account that the velocity must be zero at the contact line equation (B.20) gives the
following boundary condition:

oY,
o0X

-Q, sinX, ==, cosx, at X =1 (B.21)

Boundary condition (6.27). From Eq. (B.8) the right hand side of Eq. (4.5) is
transformed to:

¥ l+cosa 2cosa l+cosa
—__ _ B.22
Vo 2(1—cosa 1-cosa 1+cost9) ( )

Using relationship (B.10) equation (B.22) is simplified:
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r l+cosa cosa

v, ==l

S cosa 1_Cosa(1+cos01)—xlzcosot] (B.23)

After simple mathematical transformation of Eq. (B.23) boundary condition (6.27) is
calculated.

Boundary condition (6.28). The directional (normal) derivative of the stream function,
appearing in boundary condition (4.6)-(4.7) is presented for new functions (5.22) in the

following form:

¥ ) Q Q
oy, __h — +smoza b [1-% +(1+X )cosa]—2 (B.24)
on  1-x7 0x, oX, h

Equation (B.24) follows directly from Eq. (B.13), in which the non-homogeneous term is
omitted because of definition (5.22) and the phase “a” is replaced by the phase “b”. Applying
expressions (B.8) and (B.9) to relationship (B.14) written for the phase “b” it is derived that:

S (B.25)

Wy :—1+cosaSSina_{1+cosa+ cosa [(1+cosa)+(1-cosa)X ]}
on l-cosa l1-cosa 1-cosa

After equivalent mathematical transformations the right hand side of Eq. (B.25) is simplified

to obtain:
%:Hcﬂssina_{_[(l_xf)cosa—1+3cosa]81naF (B26)
on l-cosa 1-cosa 2

Equations (B.24) and (B.26) are reduced to boundary condition (6.28).
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~|velocity profile|

S
e

Fig. 1. Drop from the liquid phase ‘a’ growing at the orifice of a membrane pore. Phase ‘b’ is
the outer liquid medium. R, and R; are the radii of the cylindrical pore and spherical drop
surface. Angle « characterizes the size of the drop, while angle & characterizes the position of

the material points at the drop surface; Vs is the surface velocity.
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pore wall three—phase contact line
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Fig. 2. (a) Curvilinear coordinates (X;,X;) introduced in Section 6. (b) The pore interior,
drop interior and the outer phase are transformed, respectively, into rectangular domains, A,

B, and C.
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Stream function y for a = 30°
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Fig. 3. Calculated (a) stream function, y; (b) radial velocity component, V;, and vertical
velocity component, V,, for angle = 30°.
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Stream function i for o = 60°
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Fig. 4. Calculated (a) stream function, y; (b) radial velocity component, V;, and vertical
velocity component, V;, for angle a = 60°.
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Stream function  for a = 90°
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Fig. 5. Calculated (a) stream function, y; (b) radial velocity component, V,, and vertical
velocity component, V,, for angle o= 90°.
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s Stream function y for a = 120°
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Fig. 6. Calculated (a) stream function, y; (b) radial velocity component, V;, and vertical
velocity component, V,, for angle o= 120°.
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Stream function i for a = 150°
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Fig. 7. Calculated (a) stream function, y; (b) radial velocity component, V,, and vertical
velocity component, V,, for angle o= 150°.
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Fig. 8. Distribution of the vector of the velocity in the drop at different values for the ratio

Rd/Rpore: (a) 1.1 and (b) 1.3.
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Fig. 9. (a) Force coefficient f,, and (b) force coefficients f, and f,p, plotted vs. the angle a.
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