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Abstract. Here, we solve the problem about the electric field of a charged dielectric 

particle, which is adsorbed at the boundary water–nonpolar fluid (oil, air). The solution of this 

problem is a necessary step for the theoretical prediction of the electrodipping force acting on 

such particle, as well as of the electrostatic repulsion and capillary attraction between two 

adsorbed particles. In accordance with the experimental observations, we consider the 

important case when the surface charges are located at the boundary particle–nonpolar fluid. 

To solve the electrostatic problem, the Mehler-Fock integral transform is applied. In the 

special case when the dielectric constants of the particle and the nonpolar fluid are equal, the 

solution is obtained in a closed analytical form. In the general case of different dielectric 

constants, the problem is reduced to the numerical solution of an integral equation, which is 

carried out by iterations. The long-range asymptotics of the solution indicates that two similar 

particles repel each other as dipoles, whose dipole moments are related to the particle radius, 

contact angle, dielectric constant and surface charge density. The investigated short-range 

asymptotics ensures accurate calculation of the electrodipping-force. For a fast and 

convenient application of the obtained results, the derived physical dependencies are tabulated 

as functions of the contact angle and the dielectric constants. 
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1. Introduction 

 The problem about the interactions of electrically charged colloidal particles adsorbed at 

an oil-water interface has attracted a considerable attention [1–13] in relation to the properties 

of particle monolayers [1,2,6,7,11–16], formation of particle-stabilized (Pickering) emulsions 

[17–21], and colloidosomes [3,22–24].  

 Especially, it was established that in some cases the adsorbed particles experience a 

strong lateral repulsion that is insensitive to the addition of electrolyte (up to 1 M NaCl) in the 

aqueous phase [1,2,6]. It was proven that this effect is due to the presence of electric charges 

at the boundary particle-oil [1,2,6]. These charges induce a direct electrostatic repulsion 

between two particles across the oily phase. The latter does not contain dissolved ions, and 

there the electrostatic interactions are strong and long-range across the oil. Similar effect is 

observed when the nonpolar fluid is air, instead of oil [8,13].  

A charged dielectric particle (silica, glass, latex, etc.), which is located in the oily phase 

near the phase boundary with water, is attracted by the oil-water interface due to the image-

force effect [21]. For the same physical reasons, a particle that is attached to the oil-water 

interface experiences a normal “electrodipping” force, which pushes it into water [8]. The 

latter force leads to the formation of a concavity (meniscus, dimple) around the attached 

particle. The overlap of the menisci around two such particles gives rise to a lateral capillary 

attraction between them [25,26]. This interaction was termed “electric-field-induced capillary 

attraction” by Nikolaides et al. [3], who first found out experimentally that ordered particles at 

the surface of a water drop in oil are confined into potential wells. The presence of wells was 

explained by the overlap of the capillary attraction and the electrostatic repulsion between two 

particles [3]. 

 The electrodipping force, F(el), was directly detected in experiments with hydrophobized 

glass particles floating at the boundary water-tetradecane [8]. The theoretical investigation 

indicates that this force represents a sum of contributions due to the presence of electric 

charges at the boundaries particle–water, F(w), and particle–nonpolar fluid, F(n) [8]: 

F(el) = F(w) + F(n)            (1.1) 

In experiments with relatively large particles, of radius R = 200 – 300 µm, it has been 

established that F(el) is insensitive to the concentration of NaCl in the aqueous phase, which 
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means that for the investigated system F(w) is negligible, and F(el) ≈ F(n), i.e. the electrodipping 

force is induced by electric charges at the boundary particle–oil [8].  

 Theoretical expression for the calculation of F(n) was derived [8]: 
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Here α is the central angle determined by the position of the contact line on the particle 

surface (Fig. 1); εp and εn are the dielectric constants of the particle and of the nonpolar fluid, 

respectively; σpn is the surface electric charge density at the boundary particle–oil; the 

dimensionless function f(α,εpn) was computed in Ref. [8], by numerical solution of the 

electrostatic boundary problem, and the numerical results were tabulated (see Table 4 

therein).  

 As illustrated in Fig. 1, the normal force is counterbalanced by the respective projection 

of the interfacial tension: F = 2πrcγ sinψc, where rc = R sinα is the contact-line radius, γ is the 

interfacial tension, and ψc is the meniscus slope angle at the contact line. In cylindrical 

coordinates (r,z), the meniscus profile z = ζ(r) obeys the Laplace equation of capillarity, 

which is linearized for the case of small meniscus slope (sin2ψ << 1): 
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where q2= ∆ρg/γ (∆ρ – difference between the mass densities of the two phases; g – 

acceleration due to gravity); pel(r) is pressure (Maxwell stress) exerted at the oil-water 

interface, which is induced by the electric field of the charged particle. Equation (1.3) has to 

be solved along with the boundary conditions ∂ζ/∂r = tanψc at r = rc, and ζ = 0 at r→∞. In 

Ref. [8], we determined pel(r) from the numerical solution of the electrostatic boundary 

problem, and then ζ(r) was computed by solving numerically Eq. (1.3). In its own turn, the 

calculation of ζ is a prerequisite for theoretical prediction of the electric-field-induced 

capillary attraction between two particles. The experiment [3,12,13,15,16,19] indicates that 

such attraction is really present and plays an important role.  

 In summary, at present state of the theory, the quantitative description of the basic 

physical parameters, such as F(n), pel(r), ζ(r), etc., needs a numerical solution of the 

electrostatic boundary problem, as described in Ref. [8]. There, an appropriate numerical 

method was used with a grid of 101 × 101 subdomains. To verify the latter numerical method, 
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we solved the same problem by using the alternating direction implicit (ADI) method [27] 

using the general three-level scheme with 2001 × 2001 subdomains. The results obtained by 

the two methods were coincident. Although the use of the latter two numerical methods, in 

principle, solves the problem, their application is time consuming and it demands a 

corresponding mathematical and computational qualification of the user. It would be much 

easier if some analytical expressions could be obtained.  

 In [8], we proposed a simple semiempirical expression for pel(r): 

pel(r)
µµ +−−

= 51
c

1

)( rrr
A

           (1.4) 

where A1 and µ are constants (0 < µ < 1). The parameter µ was determined by fit of 

experimental data. In general, Eq. (1.4) gives the correct functional dependence of pel(r) at 

r→∞ and r→rc, supposedly µ is accurately determined. However, the comparison with the 

exact numerical solution for pel(r) shows that Eq. (1.4) is not sufficiently accurate to allow 

correct computation of ζ(r) by integration of Eq. (1.3). This is due to the fact that actually A1 

is not a constant, but exhibits some dependence on r.  

 Our aim in the present paper is to analyze theoretically the electrostatic boundary 

problem and to derive equations and analytical expressions for the basic physical properties of 

the investigated system (Fig. 1). The results would allow one to carry out easier and faster 

calculations of various physical characteristics of the system such as the electrodipping force, 

F(n); the electric field distribution; the electrostatic interaction between two floating particles; 

the electric pressure, pel(r), and meniscus profile, ζ(r), and the electric-field-induced capillary 

attraction. In other words, our goal in the present paper is to find an alternative and more 

convenient way for quantitative description of the investigated system, in comparison with the 

purely numerical approach proposed in Ref. [8]. 

 The paper is organized as follows. In Section 2, the basic equations and boundary 

conditions are formulated in terms of toroidal coordinates, which correspond to the symmetry 

of the system. In Section 3, the Mehler-Fock integral transform is applied to solve the 

problem. In Section 4, a closed analytical solution is obtained for the special case when 

εp = εn. In Section 5, the general case, εp ≠ εn, is considered, and the problem is reduced to the 

solution of an integral equation. Analytical expressions for the asymptotic behavior of the 

electric field at short and long distances are derived. In Section 6, the obtained long-range 

asymptotics is applied to quantify the force and energy of interaction between two adsorbed 



 5

particles at long distances. The limits of applicability of the present theory and possible 

extensions are discussed in Section 7. Appendices A, B, and C describe fragments of the 

theoretical derivations and give details about the computational procedures. The basic 

physical dependences derived in this study are tabulated in Appendix D. The tables represent 

an important part of the paper, because they give a possibility the results to be applied without 

repeating the numerical computations. On the other hand, if one decides to reproduce the 

developed computational procedures, the tables allow one to test of the respective computer 

programs.  

 

2. Physical system and basic equations 

2.1. Equations and boundary conditions 

 We consider a spherical dielectric particle of radius, R, and dielectric constant, εp, 

attached to the interface between water and a nonpolar fluid (oil, air, etc.); see Fig. 2. As a 

zero-order approximation, we will assume that the interface water–nonpolar fluid is planar. 

After determining the electrodipping force and the electric stresses for a flat interface, at the 

next step one can calculate the interfacial deformation, ζ(r); see Fig. 1 and Eq. (1.3). The 

position of the particle at the interface is determined by the central angle, α, which coincides 

with the three-phase contact angle if the oil-water interface is planar (Fig. 2). In accordance 

with the frequently used convention, we have α < 90° for hydrophilic particle, and α > 90° for 

hydrophobic particle.  

 Our aim is to determine the electric field induced by surface charges, which are located 

at the boundary particle–nonpolar fluid (Spn in Fig. 2) with density σpn. In the two dielectric 

phases, the potential of the electric field obeys the Laplace equation: 

nn
2

pp
2 in    0      and      in    0 Ω=∇Ω=∇ ϕϕ        (2.1) 

where ∇2 is the Laplace operator; Ωp and Ωn are the spatial domains occupied by the particle 

and the nonpolar fluid, respectively. The dielectric constant of water is presumed to be much 

greater than those of the particle and the nonpolar fluid: εw >> εp,εn. For this reason, the 

electric field created by charges, located in the nonpolar phases, practically does not penetrate 

into the water phase; see, for example, the conventional problem for the image force [28] and 

for a hydrophobic particle near the oil-water interface [21]. Experimentally, the non-

penetration of the field into water is manifested as independence of the configuration of the 
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adsorbed particles on the electrolyte concentration in the aqueous phase [6,8]. Thus, in first 

approximation, the role of the water is to keep the electric potential constant at the boundaries 

Snw and Spw (Fig. 2). Because the latter constant can be set zero, we obtain the following two 

boundary conditions [8]: 

pnpnwn at    0      and      at    0 SS == ϕϕ         (2.2) 

At the third interface, Spn, we impose the standard boundary conditions for continuity of the 

electric potential and the relation between the normal electric-field components [28]: 

pnpnnnpppn at    4)(      and      Sσπϕεϕεϕϕ =∇−∇⋅= n      (2.3) 

where ∇ is the gradient operator, and n is the outer unit normal to the particle surface, Spn.  

2.2. Curvilinear coordinates 

 In Ref. [8] the problem (2.1)−(2.3) was solved numerically with the help of modified 

toroidal coordinates. Because our purpose here is to obtain analytical solution, it is more 

convenient to use the conventional toroidal coordinates, ξ and η, defined as follows [29–31]: 

ξηξη coscosh   and   sin  ; sinh cc −≡== h
h
r

z
h
r

r       (2.4) 

Here h is a metric coefficient. The Lamé coefficients of the toroidal coordinate system, hξ, hη 

and hφ, are [29–31]: 

ηφηξ sinh   ; cc

h
r

h
h
r

hh ===          (2.5) 

The position of the contact line is determined by the pole A+ (η → +∞); see Fig. 3. The axis of 

revolution corresponds to η = 0; the interfaces Snw, Spn, and Spw (Fig. 2) have equations ξ = 0; 

ξ = ξc, and ξ = π + ξc, respectively (Fig. 3). Here, ξc is simply related to the angle α: 

ξc = π − α. The coordinate surfaces of constant η are toroids obtained by rotation of the 

circumference [29–31]: 

η
η 2

2
c22

c sinh
)coth(

r
zrr =+−          (2.6) 

Likewise, the coordinate surfaces of constant ξ are spheres obtained by rotation of the 

circumference [29–31]: 
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It is convenient to introduce dimensionless electric potentials, Φn and Φp: 
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In view of the axial symmetry of the system, in toroidal coordinates Eq. (2.1) acquires the 
form [29]: 
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Correspondingly, the boundary conditions, Eqs. (2.2) and (2.3), become: 

cpn at    0      and      0at    0 ξπξξ +==Φ==Φ       (2.10) 
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Here, as usual, εpn = εp/εn. The electric field intensity in the nonpolar fluid is E = −∇ϕn. From 
Eq. (2.10), it follows that the tangential component of E at the flat interface, Snw, is zero, 
while the normal component is: 
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where we have substituted ϕn from Eq. (2.8) and hξ from Eq. (2.5). As established in Ref. [8], 
the electrodipping force, F(n), exerted on the particle can be expressed as an integral of Ez

2: 
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– see Eqs. (5.14), (5.18) and (5.19) in Ref. [8]; F(n) is directed toward the water phase. 

 

3. Solution by integral transform 

3.1. Application of the Mehler-Fock transform 

 To separate the variables in Eq. (2.9), we first replace Φk by a new dependent variable, 

Ψk [30–32]: 

)p,n(  2/1 =Ψ≡Φ kh kk           (3.1) 
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Then, Eq. (2.9) acquires the form [30–32]: 
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where the linear differential operator, L[Ψ], is: 
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A substitution u = coshη transforms the operator L[Ψ] into the known Legendre operator: 
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The form of the operator L[Ψ] suggests that the solution of Eq. (3.2) can be found by means 

of the Mehler-Fock integral transform [32–38]: 
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Equations (3.5) and (3.6) represent the forward and inverse transformations. Correspondingly, 

Ψ(u) and B(τ) represent the original and image functions. P−1/2+iτ(u) is the Legendre function 

of the first kind [39–41]. Here, we are dealing with Legendre function of complex index, 

−1/2 + iτ (τ is real; i is the imaginary unit), that could be expressed by means of the following 

real integral [32,42]: 
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The Mehler-Fock transform [32–38], and the generalized Mehler-Fock transform [38,44,45] 

have found applications for solving various problems of similar geometry [42,46,47]. In view 

of Eq. (3.5), we will seek the unknown function in the form: 
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The kernel of the integral transform, K(η,τ), obeys the equation: 

),()],([ 2 τηττη KKL −=           (3.10) 

The substitution of Eq. (3.8) into Eq. (3.2) yields: 
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The solution of Eq. (3.11), satisfying the boundary condition, Eq. (2.10), and Ψn = Ψp at ξ = 

ξc, reads: 
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where Ψs(τ) is the image of the dimensionless electric potential at the boundary particle–

nonpolar fluid. 

 To determine Ψs(τ), we first aply Eq. (3.1) to represent Eq. (2.11) in the form: 
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Here, we have hc ≡ coshη − cosξc. On the other hand, the Lebedev formula [48] yields: 
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The differentiation of Eq. (3.14) with respect to ξc yields: 
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In view of Eqs. (3.8), (3.12) and (3.14), one can bring Eq. (3.13) into the form of an integral 

equation for Ψs(τ): 
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In Section 5.1 we will demonstrate that Eq. (3.16) can be transformed into the standard form 

of a Fredholm integral equation of the second kind, which has a convenient numerical 
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solution for Ψs(τ). The respective numerical procedure is much faster than the procedure for 

solving the partial differential equations in Ref. [8]. In addition, Eq. (3.16) enables one to 

derive useful asymptotic expressions for the behavior of the physical variables near the 

contact line and far from it. Finally, for εpn = 1, Eq. (3.16) has a closed analytical solution for 

Ψs(τ), which is described in Section 4.  

3.2. Expressions for the physical quantities 

Having once determined Ψs(τ), we can further determine the electric field inside the 

particle and in the nonpolar fluid, by using Eqs. (3.8) and (3.12). In particular, the electric 

field at the boundary Snw (at z = 0, see Fig. 2) can be presented in the form: 
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In general, I = I(η,α,εpn). Combining Eqs. (2.13) and (3.17) we derive the following 

expression for the force coefficient: 
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The flat interface Snw corresponds to the domain rc < r < ∞ or, respectively, ∞ > η > 0. In the 

calculations it is convenient to introduce the new variable x1, which has a finite domain of 

variation: 
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From the latter expression one derives: 
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In terms of x1, Eq. (1.4) acquires the form: 
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Because pel ∝ Ez
2|z=0, we will seek Ez|z=0, in the form: 
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where 2(1 − ν) = 1 − µ, that is ν = (1 + µ)/2; J is expected to be a function of bounded 

variation (almost constant). Note that for x1→1, we have J → C = constant ≠ 0; see Eq. (5.18). 

The combination of Eqs. (3.17), (3.20) and (3.22) yields: 
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where I is defined by Eq. (3.17), with Ψs(τ) being the solution of Eq. (3.16). In terms of J, the 

electric pressure, pel, can be expressed in the form: 
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In Section 5, we consider the general solution of Eq. (3.16), while in Section 4 we obtain and 

discuss the analytical solution to the problem in the special case εp = εn.  

 

4. Analytical solution to the problem for εp = εn  

4.1. Solution of the integral equation 

 When the particle has the same dielectric constant as the nonpolar fluid, i.e. εpn ≡ εp/εn = 

1, then Eq. (3.16) has an analytical solution: 
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The substitution of Eq. (4.1) into Eq. (3.17), along with the identity ξc = π − α, leads to the 

following expression for the integral I: 
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Here and hereafter, the subscript “e” means that the respective quantity is estimated at equal 

εp and εn. The integral in Eq. (4.2) has to be solved numerically. In view of Eq. (3.9), K(η,τ) is 

related to the Legendre function, whose computation is time consuming. To speed up the 
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numerical procedure, in Eq. (4.2) we substituted the integral expression for P−1/2+iτ , Eq. (3.7), 

and carried out the integration with respect to τ. The result reads (see Appendix B): 
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The integral in Eq. (4.3) converges well because at x→∞ the integrand decays exponentially, 

while at x→0 it behaves as x−1/2.  

 

4.2. Asymptotics of the electric field far from the particle 

 Far from the particle (r >> rc), we have x1→0 and η→0. In this limit, Eq. (3.22) 

acquires the form: 

)1;,0()(
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ε
σπ

rrzDxEz       (4.5) 

In view of Eqs. (3.23) and (4.2), we have introduced the notation: 
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At the last step we have used the fact that K(0,τ) = P−1/2+iτ(1) = 1. De(α) tends to a nonzero 

constant (Fig. 4), and then asymptotically Ez ∝ x1
3; see Eq. (4.5). Because x1 = rc/r, we have 

Ez ∝ r−3 for r >> rc, i.e. the electric field created by the particle at long distances behaves as 

the electric field of a dipole. The function De(α) determines the dependence of the effective 

dipole moment on the angle α. We calculated De(α) by solving numerically the integral in Eq. 

(4.6). The results are tabulated (Table 1 in Appendix D, the column for εpn = 1). The 

computed plot of De vs. α is shown in Fig. 4. For α→0 we have De→1/(3π) = 0.1061; see Eq. 

(A.11) in Appendix A.  

We should also note that the right-hand side of Eq. (4.5) represents the leading term of a 

series expansion for x1 << 1. It can be proven that the first neglected term in this expansion is 

proportional to x1
5.  
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4.3. Asymptotics of the electric field near the particle 

 Near the contact line on the particle surface (r→rc), we have x1→1 and η→+∞. In this 

limit, the integral in Eq. (4.3) has the following asymptotic form: 

∫
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−
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The last integral can be taken analytically [49]. Thus we obtain: 
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where Γ is the known gamma function [29,39–41]. From Eq. (3.14) we deduce: 
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Using Eq. (4.9), we obtain the form of Eq. (4.8) for x1 → 1: 
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In view of Eq. (4.10), the asymptotic form of Eqs. (3.22) and (3.23) near the contact line is: 
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The function Ce(α) is plotted in Fig. 4 and tabulated (Table 2 in Appendix D, the column for 

εpn = 1). For α→0 we have Ce→1/(21/2π) = 0.2251; see Eq. (A.13) in Appendix A.  

Because 0 < α < π, Eq. (4.4) yields 0.5 < νe < 1. Then, in view of Eq. (4.11), Ez|z=0 has 

an integrable divergence for x1 → 1. On the other hand, the integral for the force coefficient, 

fσσ, is convergent. To check that, we substitute Eq. (3.20) into Eq. (3.18): 
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1
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12
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x
xxIf πσσ           (4.13) 

For εpn = 1, I = Ie is to be substituted from Eq. (4.10). Then, the integrand in Eq. (4.13) is 
22

1
e)1( −−∝ νx . Because νe > 0.5, we have 2νe − 2 > −1; in other words the integral in Eq. 
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(4.13) is convergent. Note that such type of integrable singularities at edge-lines are typical 

for problems related to the calculation of the electric field in wedge shaped (angular) spatial 

domains; see e.g. Ref. [28]. In our case, the wedge is formed between the surfaces Spn and Snw, 

which intersect at the contact line, r = rc (Fig. 2). 

 

4.4. Numerical results and discussion 

 Equations (3.22) and (3.24) indicate that we could calculate the electric field, Ez|z=0, and 

of the electric pressure, pel(x1), if the function J(x1,α,εpn) is known. In the considered special 

case, εpn = 1, Eq. (3.23) acquires the form: 
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e
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xx
I
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where Ie and νe are given by Eqs. (4.3) and (4.4). Equation (3.21), which is a version of a 

semiempirical formula proposed in Ref. [8], assumes that A1 ∝ J2 is independent of x1; see Eq. 

(3.24). With the help of Eq. (4.14) we could check whether this assumption is close to the 

reality. 

 In Fig. 5 we have plotted Je vs. x1 for several values of α. One sees that Je is practically 

independent of x1 only for α ≈ 90°. On the other hand, for α ≈ 150° Je varies by one order of 

magnitude. The accurate calculation of Ez|z=0 and pel(x1) demands Je to be accurately 

calculated. The continuous lines in Fig. 5 are obtained from Eq. (4.14) by means of numerical 

integration of Eq. (4.3). The points denoted by circles in Fig. 5 are calculated independently, 

by means of the alternative procedure for solution of partial differential equations described in 

section 5.2 of Ref. [8]. The excellent agreement between the two independent solutions 

confirms the accuracy of the used numerical procedures. 

Figure 6 shows plots of Je vs. x1 again, but this time for smaller values α, viz. α = 0°, 5° 

and 10°. The curve for α = 0 is drawn by means of the analytical expression derived in 

Appendix A; see Eq. (A.14) therein. One sees that the curves in Fig. 6 vary between 0.1 and 

0.215, i.e. the magnitude of Je could change about two times. 

Plot of the force coefficient fσσ vs. α is shown in Fig. 7 for εpn = 1. fσσ is calculated from 

Eq. (4.13), where I = Ie is obtained from Eq. (4.3). In both Eqs. (4.13) and (4.3) the integration 

is carried out numerically. As seen in Fig. 7, fσσ varies by orders of magnitude as a function of 
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α, and has a minimum at α ≈ 65°. In addition, fσσ exhibits a logarithmic divergence at α→0; 

see Appendix A. The latter facts indicate that fσσ is not a convenient parameter, from both 

computational and physical viewpoint. To find a more convenient force coefficient, we 

considered the following three equivalent expressions for the electrodipping force: 
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        (4.15) 

The coefficient f(α,εpn) was computed and tabulated in [8], see Eq. (1.2); the coefficient 

fσσ(α,εpn) was also used in the theoretical derivations therein. The coefficient fR ≡ fσσ sin2α is 

plotted vs. α in Fig. 7 for εpn = 1. One sees that fR exhibits a simple monotonic dependence on 

α, and that fR is regular in the whole interval 0≤ α ≤ π, where 0≤ fR ≤ π. The greatest value, 

fR(α=π) = π, corresponds to a spherical particle into oil, that has only a point contact with the 

water; the same limiting value is obtained independently in Ref. [21].  

 Physically, the increase of fR with α (Fig. 7) corresponds to the fact that for a particle of 

fixed radius, R, with the rise of α, the area of the electrically charged interface Spn, increases 

(Fig. 2). For greater charge at Spn, the electrodipping force, F(n), and the respective force 

coefficient, fR, must be also greater.  

 The transparent physical meaning of fR(α), and its regular behavior (Fig. 7), make fR the 

most convenient force coefficient. For this reason, in Table 3 of Appendix D we have 

tabulated the dependence fR(α,εpn) for the needs of a fast and convenient calculation of the 

electrodipping force F(n). For εpn = 1, fR is computed by integration in Eqs. (4.13) and (4.3). 

The columns with εpn ≠ 1 are computed with the help of the general theory in Section 5. 

 

5. Solution to the general problem, for εp ≠ εn  

 In the general case when εp ≠ εn, we cannot find a simple analytical solution of Eq. 

(3.16) for Ψs(τ), like Eq. (4.1). Nevertheless, in this case Eq. (3.16) can be solved by using a 

convenient and accurate procedure that is described in Section 5.1. 
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5.1. Reduction of the problem to Fredholm equation 

 First, we subject Eq. (3.6) to the inverse Mehler-Fock transform, Eq. (3.16): 

∫
∞

Ψ+
−

=Ψ
0

s
2

c
2

c

2/3

s
~d)~,()~()(sin)(

)sinh(
)sinh(

sin
)1(2)( τττττξβτ

πτ
ατ

ξ
βτ Ugg    (5.1) 

)sinh(])sinh[(
)sinh()sinh()tanh(

)(where
c

c2

ατβτξπ
τξπτπτ

τ
−+

≡g        (5.2) 

Here, as usual, ξc = π − α; the definitions of the dimensionless parameter β and the kernel U 

are as follows: 
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Note that )~,( ττU  is a symmetric function of its arguments. The procedure for calculation of 

K(η,τ) and )~,( ττU  is described in Appendix C.  

Next, it is convenient to introduce two new functions, G and V, as follows: 

)~,()~()(sin)~,(    ,)(/)()( cs ττττξβτττττ UggVgG ≡Ψ≡      (5.5) 

Thus, Eq. (5.1) acquires the form of an integral equation of Fredholm of the second kind [50]:  
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One could check that the functions b2 and V2 are integrable over the domain 0 < τ < ∞. 

Moreover, )~,( ττV  is a symmetric function of its arguments. In such a case, G(τ) can be found 

as a solution of Eq. (5.6), by iterations [51]. To start the iterations, we substituted )~(τG  = 

)~(τb  in the right-hand side of Eq. (5.6). This simple iteration procedure converges fast. In our 
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computations, to achieve a relative error of 10−8, the maximum number of iterations was 30 

for εpn = 8.  

The calculation of the kernel, V, is much more time consuming than the numerical 

solution of the integral equation. The computations can be accelerated in the following way. 

The function, U, defined by Eq. (5.4), depends on α, but it is independent of εpn. As described 

in Appendix C, we calculated U, and stored the dependence of U on α. The stored numerical 

data were further used to compute the parameters in the tables in Appendix D for various εpn.  

5.2. Asymptotics of the electric field far from the particle 

 As mentioned in section 4.2, far from the particle (r >> rc), we have x1→0 and η→0. In 

this limit, with the help of Eq. (3.20), one can bring Eq. (3.17) into the form: 
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In Eq. (3.17), we have used the fact that K(0,τ) = P−1/2+iτ(1) = 1. Note that Eqs. (4.5)–(4.6) 

represent a special case of Eqs. (5.8)–(5.9) for εpn = 1. Equation (5.8) expresses the leading 

term of a truncated series expansion, the first neglected term being of the order of x1
5. For 

x1→0, Eq. (5.8) predicts Ez ∝ x1
3 ∝ r−3. In other words, as mentioned above, at long distances 

the electric field created by the particle behaves as the field of a dipole. The function D(α,εpn) 

is proportional to the dipole moment; see Section 6 for details. To calculate D(α,εpn), we first 

determined Ψs(τ) as explained in Section 5.1 and Appendix C, and then we computed 

numerically the integral in Eq. (5.9). The dependence D(α,εpn) is tabulated (see Table 1 in 

Appendix D). 

 Figure 8 shows the calculated plots of D vs. α for five different values of εpn. One sees 

that D increases by several orders of magnitude with the rise of α. On the other hand, D 

decreases with the increase of εpn. The physical consequences of this behavior are discussed in 

Section 6, where the electrostatic interaction between two adsorbed particles is considered.  
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5.3. Determination of the power ν in the short-range asymptotics  

 In the special case εpn = 1, the power νe is expressed by Eq. (4.4). In the general case 

εpn ≠ 1, such explicit expression for ν is missing. Instead, ν can be determined as the smallest 

positive root of Eq. (5.17); see below.  

We recall that ν characterizes the integrable divergence of Ez(x1) and pel(x1) for x1→1, 

i.e. at the contact line on the particle surface; see Eqs. (3.22) and (3.24). The contact line 

represents the edge-line of the wedge-shaped zone confined between the surfaces Spn and Snw 

near the particle. Analogous problem has been solved in Ref. [28] for a wedge with planar 

surfaces. Here, our problem is more complicated, because the surface Spn is spherical and the 

edge-line is curved; therefore, we have to use curvilinear coordinates. 

 In view of Eq. (3.3), the asymptotic form of Eq. (3.2) for η→∞ (x1→1) is: 
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Here, Ψn,0 and Ψp,0 are the leading terms in the expansions of Ψn and Ψp for η→∞. In the 

same limit, we have set cothη ≈ 1. In the frame of the same approximation, the boundary 

conditions, Eqs. (2.10), (2.11) and (3.13) acquire the form: 
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Equations (5.10)–(5.12) define the boundary problem in the considered close vicinity of the 

contact line. The general solution of Eq. (5.10), that satisfies Eq. (5.11), is: 
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where Xn and Xp are unknown coefficients. The substitution of Eqs. (5.13) and (5.14) into the 

boundary conditions, Eq. (5.12) leads to the following homogeneous system of linear 

equations for Xn and Xp: 
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This system will have a non-trivial solution, when the determinant of the system is equal to 

zero, i.e.: 

0)sin()cos()cos()sin( ccpn =+ νπνξνπνξε        (5.16) 

Having in mind that ξc = π − α, after some transformations we bring Eq. (5.16) into the form: 

)sin(])2sin[( ανβναπ =−           (5.17) 

where β is defined by Eq. (5.3). Equation (5.17) has an infinite series of positive roots ν1 < ν2 

< ν3 <…. For −1 < β < 1, the smallest root, ν1, is always between 0.5 and 1.0; moreover, we 

always have ν2 > 1. Equation (3.22) indicates that Ez|z=0 ∝ (1 − x1)ν−1, and consequently, only 

the first root, ν1, corresponds to singularity, whereas the other roots, ν2, ν3,…, do not give 

contribution to the singularity of the electric field at the contact line. In the special case εpn = 1 

(β = 0), Eq. (5.17) gives ν1 = νe, where νe is given by Eq. (4.4). 

As we are interested in the leading (singular) term in the expansion of Ez|z=0 at x1→1, 

hereafter we will set ν ≡ ν1. The dependence ν = ν(α,εpn), calculated from Eq. (5.17), is 

tabulated in Appendix D (Table 4 therein) and illustrated in Fig. 9. As seen in this figure, the 

limiting values of ν are ν(α=0) = 0.5 and ν(α=π) = 1 (see also Table 4 in Appendix D). The 

latter value, corresponding to point contact of the particle with the water phase, indicated the 

absence of singularity, as independently established in Ref. [21] for this special case. 

In general, ν increases monotonically with the rise of both α and εpn (Fig. 9). Because 

Ez|z=0 ∝ (1 − x1)ν−1, the most pronounced singularity takes place at the smallest value of ν, 

viz., ν = 0.5, which corresponds to a particle (immersed in water) that has a point contact with 

the nonpolar fluid (oil, air).  

 

5.4. Asymptotics of the electric field near the particle 

 The limiting form of Eq. (3.22) near the contact line (x1→1) is: 
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and where ν is the smallest positive root of Eq. (5.17). We determined C(α,εpn) numerically, 

in the framework of the calculation of J(x1,α,εpn), which is considered in Section 5.5. For 

x1→1, the computed J tends to a constant, which is equal to C, in accordance with Eq. (5.19). 

Numerical results for C(α,εpn) are tabulated in Appendix D and illustrated in Fig. 10. One sees 

that for the smaller εpn, the dependence C(α) exhibits a maximum, whereas for the greater εpn 

it is monotonic. For α < 145°, C decreases with the rise of εpn, while for α < 145° this 

tendency is inverted. 

 To check how important is the asymptotics of Ez at x1→1 for the electrodipping force, 

we represent Eq. (4.13) in the form: 
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To obtain Eq. (5.20), we first substituted I from Eq. (3.17) into Eq. (4.13), and then replaced 

coshη − 1 from Eq. (3.20); δ is a small parameter. The second integral in the right-hand side 

of Eq. (5.20) can be estimated by substituting Ez|z=0 from Eq. (5.18): 
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For ν→0.5, the right-hand side of Eq. (5.21) could become large. For example, for δ = 0.001 

and 2ν − 1 = 0.01, we have δ 2ν−1/(2ν − 1) = 93.33. This fact could lead to inaccuracies when 

fσσ is calculated by numerical integration with a finite step. For this reason, at the smaller α, 

the values of the force coefficient f(α,εpn) determined from Table 4 in Ref. [8] could differ in 

the frame of ±15% from the exact values of this quantity calculated here on the basis of the 

exact analytical asymptotics (see the table for fR in Appendix D). 

In fact, ν→0.5 for α→0 (see Fig. 9), which corresponds to a particle situated in water 

and having only a point contact with the nonpolar phase. In this limit, fσσ has a logarithmic 

singularity (Appendix A), but the physical force coefficient, fR ≡ fσσ sin2α, tends to zero 

because of the multiplier sin2α; see Eq. (4.15) and Fig. 11. 
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5.5. Calculation of fR and J in the general case when εpn ≠ 1 

 To calculate fR(α,εpn) and J(x1,α,εpn) in the general case εpn ≠ 1, we first solved Eq. (5.6) 

and determined Ψs(τ), as explained in Section 5.1 and Appendix C. Then, Ψs(τ) was 

substituted in Eq. (3.17) to determine I. Next, I was substituted in Eqs. (3.23) and (4.13) to 

calculate J and fσσ. Finally, we used the relationship fR ≡ fσσsin2α. 

 The calculated fR(α,εpn) is tabulated in Appendix D and illustrated in Fig. 11. As seen in 

the figure, fR is monotonically increasing with the rise of α. This behavior is related to the fact 

that the area of the interface particle–nonpolar fluid (and the total surface charge) is larger for 

greater angle α. In particular, for α = 0 this area is zero and fR = 0. The dependence of fR on 

εpn is more complicated. For α < 120°, fR grows with the rise of εpn, but for greater α this 

tendency is inverted (Fig. 11). fR has no singular points in the whole interval 0 ≤ α ≤ 180°. For 

example, for εpn = 8, fR(180°) = 11.10 (not shown in Fig. 11). For α = 180° it is preferable to 

use the theoretical expressions in Ref. [21], to avoid computational problems related to 

singularity in the coordinate transformation in Section 2.2. The values of fR(α,εpn), tabulated 

in Appendix D, can be used for calculation of the electrodipping force, F(n), with the help of 

Eq. (4.15). If F(n) is experimentally measured, the tabulated numerical data for fR(α,εpn) enable 

one to determine the surface charge density, σpn; see Ref. [8] for details.  

 Figures 12a and 12b show calculated curves J(x1) for several values of α and two values 

of εpn. We recall that we need to know J(x1,α,εpn) for calculating the electric field Ez|z=0 and 

the electric pressure, pel(r), by means of Eqs. (3.22) and (3.24). As expected, J(x1) is a 

function of bounded variation, which is almost constant for α about 90°. The strongest 

dependence of J on x1 is observed for the more hydrophobic particles, see the curve with α = 

150° in Fig. 12. On the other hand, J exhibits a pronounced dependence on α : J could rise by 

two orders of magnitude when α increases from 30° to 150°. The comparison between Figs. 

12a and 12b indicates that the increase of εpn produces some effect on J, but this effect is 

much weaker than the influence of α.  

As in Fig. 5, the continuous lines in Fig. 12 are obtained by using the equations derived 

in the present paper, whereas the points denoted by circles are calculated independently, by 

means of the procedure for solution of partial differential equations described in section 5.2 of 

Ref. [8]. It should be noted that the density of the integration grid used in Ref. [8] is greater 

than the density of the points (the circles) shown in Figs. 5 and 12. (We had to decrease the 
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density of the circles shown in the figures to make the continuous line visible.) In both Figs. 5 

and 12, the agreement between the two independent solutions is excellent and confirms the 

accuracy of the two different computational procedures.  

 

6. Asymptotic expression for the lateral electric force between two particles 

 Here, we consider two particles which are attached to the boundary water–nonpolar 

fluid, and which are separated at a center-to-center distance L (Fig. 13). In accordance with 

Eq. (5.8), for r >> rc the electric field generated by each particle in isolation is identical to the 

electric field of a dipole, whose dipole moment is perpendicular to the interface water–

nonpolar fluid: 
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where the effective dipole moment is: 
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D = D(α,εpn) is defined by Eq. (5.9); it is tabulated in Appendix D, and illustrated in Fig. 8.  

 The force of electrostatic interaction between two such particles-dipoles (Fig. 13) is: 
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Here, pd1 and pd2 are the dipole moments defined by Eq. (6.2), but in general, they could 

correspond to different particle radii, R1 and R2; dielectric constants, εp1 and εp2; contact 

angles, α1 and α2, and surface charge densities, σpn1 and σpn2. The factor 2 in the denominator 

of Eq. (6.3) accounts for the fact that the dipolar field occupies only the upper half-space (the 

nonpolar fluid), see Fig. 13. Indeed, as mentioned above, the electric field, created by charges 

in the nonpolar phases, practically does not penetrate into the water phase due to its greater 

dielectric constant. The presence of dissolved electrolyte in the aqueous phase additionally 

suppresses the penetration of electric fields from the oil into the water [21]. 

 As indicated by Eq. (6.2), the dipole moment pd is proportional to Dsin3α. In Fig. 14 we 

have plotted Dsin3α vs. α for various values of εpn. One sees that pd ∝ Dsin3α increases 

monotonically with the rise of α, but decreases when εpn increases. In particular, the 
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divergence of D for α→180° (Fig. 8) is compensated by the fact that sin3α→0 in the same 

limit, so that pd is finite for all α ∈ [0, 180°].  

In general, the increase of pd ∝ Dsin3α with the rise of α (Fig. 14) correlates with the 

experimental fact that the repulsion between adsorbed particles increases when the particles 

are more hydrophobic; see Ref. [6]. In the latter study, for α ≥ 129° the repulsion between the 

particles was so strong that they formed hexagonal lattices whose constant was considerably 

greater than the particle diameter. On the other hand, for α ≤ 115° the repulsion weakened, 

and the particles coagulated and formed surface aggregates [6]. 

 In general, the interaction described by Eq. (6.3) is repulsion when σpn1 and σpn2 have 

similar signs and attraction if σpn1 and σpn2 have the opposite signs. The respective interaction 

energy is: 
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As mentioned above, the Coulombic interaction of adsorbed particles across the oily phase 

was experimentally established in Ref. [1] and estimated by means of the following formula 

[1,6,12]: 
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In Eq. (6.5) the case of two identical particles is considered; Apn = 2πR2(1 − cosα) is the area 

of the interface particle–nonpolar fluid. The asymptotics of Eq. (6.5) for R2/L2 << 1 reads: 
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The comparison of Eqs. (6.6) and (6.4) shows that the effective dipole moment in Eq. (6.6) is 

pd* = ApnσpnR(3 + cosα)2. The ratio of the exact dipole moment pd in Eq. (6.2) and the 

estimated dipole moment, pd*, is: 
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In Fig. 15 we have plotted pd /pd* vs. α for various εpn. One sees that pd /pd* is close to 1 for 

the greater α and smaller εpn. In all other cases, one should use the exact Eq. (6.2), which 

accounts for the effect of εpn on pd. 

 

7. Limits of applicability of the developed theory 

 The theory developed in the present paper is sufficient for quantitative description of the 

electrodipping force, F(el), when the following two relations are satisfied: 

F(el) ≡ F(w) + F(n) ≈ F(n)           (7.1) 
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see Eqs. (1.1) and (4.15). Equation (7.1) means that the contribution of surface charges at the 

particle-water interface is much smaller than the contribution of charges at the boundary 

particle-nonpolar fluid, i.e. F(w) << F(n). Experimental indication for the fulfillment of Eq. 

(7.1) is the independence of the particle configuration on the variation of electrolyte 

concentration in the aqueous phase. This was observed with particles of radius R = 200–300 

µm in Ref. [8], but it was also detected with much smaller particles, R = 1 µm, in Ref. [6]. On 

the other hand, indication about a possible effect of F(w) was found in [3], where the order–

disorder transition in particle monolayers was sensitive to the concentration of salt in the 

water. In general, one could expect that the effect of F(w) should become significant for 

relatively small particles, for which the particle radius is comparable to the thickness of the 

adjacent electric double layer in the water.  

 Equation (7.2) is an approximated version of Eq. (5.14) in Ref. [8], which reads: 
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where ∆ϕ is the difference between the electric potentials at the boundaries particle–water and 

nonpolar fluid–water; the dimensionless functions fϕϕ, fϕσ and fσσ depend on α and εpn, and all 

of them are of the order of 1. (Note that Eq. (2.2) is equivalent to setting ∆ϕ = 0.) For typical 

parameter values, rc = 200 µm; εn = 2; σpn = 80 µC/m2 (2000 nm2 per charge), and ∆ϕ = 60 

mV, the magnitude of the terms in Eq. (7.3) is [8]: 

N10]1037.61092.145.1[ 594(n) −−− ××+×+= ϕϕϕσσσ fffF     (7.4) 
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One sees that for rc = 200 µm the terms with fϕσ and fϕϕ are completely negligible and Eq. 

(7.3) reduces to Eq. (7.2). However, for rc = 20 nm the three terms in Eq. (7.4) become 

comparable. In such a case, one should calculate also the force coefficients fϕσ and fϕϕ, 

defined in Ref. [8].  

 In summary, when the particles are large enough, then Eqs. (7.1) and (7.2) are satisfied 

and the theory developed in the present article is sufficient for a quantitative theoretical 

description of the electrodipping force, F(el) ≈ F(n). In contrast, for smaller particles the 

deviations from Eqs. (7.1) and (7.2) could become significant, and then one should calculate 

also F(w), fϕσ and fϕϕ to achieve an accurate quantitative description. Note that the formalism, 

developed here for calculation of fσσ, is directly applicable for the calculation of fϕσ and fϕϕ . 

 

8. Summary and conclusions 

 Our purpose here is to solve the theoretical problem about the electric field of a charged 

dielectric particle, which is adsorbed at the boundary water–nonpolar fluid (oil, air), see Figs. 

1 and 2. In accordance with the experimental findings [2,6,8,11–13], we consider the case 

when the surface charges are located at the boundary particle–nonpolar fluid. The symmetry 

of the system suggests the Mehler-Fock integral transform to be used for solving the 

electrostatic boundary problem (Section 3). In the special case when the dielectric constants 

of the particle and the nonpolar fluid are equal, the solution is obtained in a closed analytical 

form (Section 4). In the general case of different dielectric constants, the problem is reduced 

to the solution of a Fredholm integral equation, Eq. (5.6), which can be carried out 

numerically, by iterations (Section 5.1 and Appendix C). The latter numerical procedure turns 

out to be much faster than the procedure for direct numerical integration of the original partial 

differential equations, which has been previously used [8].  

 In addition, the derived equations enabled us to obtain analytical expressions for the 

asymptotic behavior of the electric field near the particle and far from it. The long-range 

asymptotics indicates that two similar particles repel each other as dipoles, whose dipole 

moments are expressed through the particle radius, contact angle, dielectric constant and 

surface charge density (Section 6). On the other hand, the analytical expression for the short-

range asymptotics is important, because the electric field has an integrable divergence at the 

particle contact line that is described by the functions C(α,εpn) and ν(α,εpn), see Eq. (5.18). 
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The knowledge of the short-range asymptotics ensures accurate calculation of the 

electrodipping-force coefficient, fR(α,εpn). 

For a fast and convenient application of the results obtained in the present paper, the 

reader could use the dependencies D(α,εpn), C(α,εpn), fR(α,εpn), and ν(α,εpn), tabulated in 

Appendix D, instead of repeating the calculations described in Section 5.1 and Appendix C. 

Thus, D(α,εpn), C(α,εpn), and ν(α,εpn) can be applied for calculation of the meniscus shape 

around an adsorbed particle, see Ref. [52]; fR(α,εpn) can be used for computing the 

electrodipping force, and for determining the surface charge density, σpn; see Eq. (4.15). 

D(α,εpn) is necessary for calculation of the electrostatic interaction between two adsorbed 

particles at long distances, in accordance with Eqs. (6.2)–(6.4). After a theoretical upgrade, 

the results could be also applied for prediction of the electric-field-induced capillary attraction 

[3]. 
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Appendix A. Analytical solution to the problem for α << 1 

 The considered electrostatic problem has a closed analytical solution for α << 1. 

Physically, this is the case of hydrophilic particle, whose contact angle is close to zero, see 

Fig. 2. In this case, our boundary problem, Eqs. (2.1)–(2.3), reduces to: 
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The solution of Eq. (A.1), which is finite at infinity, and which is continuous at the plane z = 

0, can be expressed in terms of Hankel transform [36,37,53]: 
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where J0 is the Bessel function of zero order, and X(s) is the Hankel image of the electric 

potential. The substitution of Eq. (A.4) into the boundary conditions, Eqs. (A.2)–(A.3), leads 

to the following integral equations: 
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The exact solution of Eq. (A.5) is reported in Ref. [53]; its application to our specific case 

yields: 
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Using the fast that J1/2(x) = [2/(πx)]1/2sinx, see e.g. Refs. [29,40], we take the integral in Eq. 

(A.6): 
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With the help of Eqs. (A.4) and (A.7), we express the electric field, Ez|z=0 = ∂ϕn/∂z|z=0 : 
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The integral in Eq. (A.8) can be taken exactly [41]: 
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where, as usual, x1 = rc/r. At large distances from the particle, x1 << 1, we have 

...
10
3

3
)arcsin(

)1(

5
1

3
1

12/12
1

1 ++=−
−

xxx
x
x         (A.10) 

Then, the comparison of Eqs. (A.9) and (5.8) yields an expression for D|α=0 : 
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In the opposite limit, x1 → 1, close to the contact line we have: 
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Then, the comparison of Eqs. (A.9) and (5.18) yields an expression for C|α=0 : 
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where at the last step we have used the fact that ν |α=0 = 0.5; see Fig. 9. Equations (A.11) and 

(A.13) give the values of the parameters D and C for small contact angles; see also Figs. 8 and 

10, and Tables 1 and 2 in Appendix D. In addition, because fσσ is proportional to integral over 

Ez
2|z=0, see Eq. (5.20), equation (A.9) shows that fσσ has logarithmic singularity at α→0. 

Finally, comparing Eqs. (A.9) and (3.22), we obtain: 
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Appendix B. Calculation of the integral in Eq. (4.2) 

 To transform the integral in Eq. (4.2), we substitute K(η,τ) from Eqs. (3.7) and (3.9): 
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The last integral in Eq. (B.1) is of Fourier type and it can be taken exactly: 
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where νe is defined by Eq. (4.4). Substituting Eq. (B.2) into Eq. (B.1), we obtain: 
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Finally, in Eq. (B.3) we introduce a new integration variable, y = 2x + η, and after some 

transformations we derive Eq. (4.3).  
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Appendix C. Procedure for fast calculation of the kernels K and U 

 For a fast computation of the kernel K(η,τ), defined by Eq. (3.9), we have been using 

two alternative expressions, depending on whether η is small or large. For small values of η, 

it is convenient to use Eq. (8.11.1) in Ref. [40]: 

)exp();1;,
2
1(),( 1,2 ητη bybFK −=          (C.1) 

)2exp(1,5.0where ητ −−=+= yib         (C.2) 

and F2,1(a,b;c;y) is the hypergeometric function. On the other hand, for large, values of η, it is 

more convenient to use Eq. (15.3.6) in Ref. [40]: 
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where Γ is the gamma function; b and y are given by Eq. (C.2), and the other parameters are: 

τττ icicib −=+=−= 1,1,5.0         (C.4) 

In our computations, we used FORTRAN with IMSL, where the Γ function of complex 

argument is a built-in function. To calculate F2,1(a,b;c;y), we applied numerical summation of 

the standard hypergeometric series of Gauss [40]. For the process of computations, it is 

convenient to introduce the quantity: 

)0312.0exp(202.01371.0 τη −+≡b         (C.5) 

To minimize the number of terms summed when calculating the hypergeometric series, we 

used the following criterion: For 0 ≤ η ≤ ηb, K(η,τ) is calculated by means of Eq. (C.1), 

whereas η > ηb, K(η,τ) is calculated by means of Eq. (C.3). Alternatively, one could use the 

software “Mathematica 5.0”, where F2,1(a,b;c;y) is a built-in function. 

 To compute the function )~,( ττU , we carried out the integration in Eq. (5.4) 

numerically, by using the Simpson rule. Equation (C.3) shows that the function 

)~,(),( τητη KK  decays as exp(−η) at large η, and therefore the integral in Eq. (5.4) converges 

very well. 
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Appendix D. Tabulated values of the computed basic functions 

For a fast and convenient application of the results obtained in the present paper, the 

reader could use the dependencies D(α,εpn), C(α,εpn), fR(α,εpn), and ν(α,εpn), tabulated here, 

instead of repeating the calculations described in Section 5.1 and Appendix C.  

 
Table 1. Function D(α,εpn) defined by Eq. (5.9) 

 
εpn = εp/εn α 

0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00 
0 0.1886 0.1698 0.1415 0.1213 0.1061 0.08488 0.07074 0.04244 0.02358
5 0.1941 0.1755 0.1472 0.1268 0.1114 0.08957 0.07490 0.04525 0.02526
10 0.2006 0.1822 0.1539 0.1332 0.1174 0.09490 0.07964 0.04846 0.02718
15 0.2083 0.1900 0.1615 0.1405 0.1243 0.1010 0.08505 0.05214 0.02939
20 0.2173 0.1990 0.1702 0.1488 0.1321 0.1079 0.09123 0.05636 0.03194
25 0.2277 0.2093 0.1803 0.1583 0.1411 0.1159 0.09831 0.06122 0.03489
30 0.2398 0.2213 0.1917 0.1692 0.1513 0.1250 0.1065 0.06682 0.03831
35 0.2538 0.2351 0.2049 0.1817 0.1631 0.1355 0.1158 0.07333 0.04229
40 0.2700 0.2511 0.2202 0.1960 0.1767 0.1476 0.1267 0.08090 0.04696
45 0.2888 0.2695 0.2378 0.2127 0.1924 0.1616 0.1393 0.08976 0.05246
50 0.3107 0.2910 0.2582 0.2320 0.2107 0.1780 0.1541 0.1002 0.05897
55 0.3363 0.3160 0.2820 0.2546 0.2320 0.1971 0.1714 0.1125 0.06673
60 0.3664 0.3454 0.3099 0.2811 0.2571 0.2197 0.1918 0.1272 0.07604
65 0.4018 0.3800 0.3428 0.3123 0.2868 0.2465 0.2162 0.1449 0.08730
70 0.4438 0.4211 0.3819 0.3494 0.3221 0.2785 0.2453 0.1662 0.1010 
75 0.4941 0.4701 0.4286 0.3939 0.3644 0.3170 0.2805 0.1921 0.1179 
80 0.5546 0.5292 0.4850 0.4477 0.4157 0.3638 0.3234 0.2241 0.1388 
85 0.6281 0.6011 0.5537 0.5132 0.4783 0.4211 0.3761 0.2637 0.1651 
90 0.7184 0.6894 0.6381 0.5939 0.5556 0.4921 0.4417 0.3135 0.1985 
95 0.8306 0.7992 0.7432 0.6946 0.6521 0.5811 0.5241 0.3768 0.2413 
100 0.9718 0.9374 0.8757 0.8217 0.7742 0.6941 0.6292 0.4583 0.2973 
105 1.152 1.114 1.045 0.9848 0.9311 0.8398 0.7651 0.5649 0.3713 
110 1.386 1.344 1.266 1.197 1.136 1.031 0.9438 0.7067 0.4712 
115 1.696 1.648 1.559 1.480 1.409 1.286 1.183 0.8990 0.6086 
120 2.116 2.060 1.956 1.864 1.780 1.635 1.512 1.166 0.8020 
125 2.700 2.633 2.510 2.400 2.299 2.123 1.974 1.545 1.082 
130 3.536 3.455 3.305 3.170 3.047 2.830 2.644 2.102 1.499 
135 4.781 4.679 4.491 4.320 4.165 3.889 3.652 2.950 2.145 
140 6.720 6.587 6.341 6.117 5.913 5.551 5.237 4.298 3.192 
145 9.916 9.733 9.395 9.088 8.808 8.309 7.875 6.566 4.986 
150 15.59 15.32 14.83 14.38 13.96 13.23 12.60 10.67 8.294 
155 26.71 26.28 25.48 24.76 24.10 22.94 21.93 18.85 15.01 
160 51.81 51.02 49.56 48.25 47.05 44.93 43.11 37.58 30.67 
165 122.2 120.4 117.1 114.2 111.5 106.8 102.8 90.72 75.84 
170 410.7 404.9 394.3 384.8 376.2 361.2 348.4 310.7 265.4 
175 3274 3228 3145 3071 3005 2889 2790 2505 2175 
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Table 2. Function C(α,εpn) defined by Eq. (5.19) 
 

εpn = εp/εn α 
0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00 

0 0.4001 0.3601 0.3001 0.2572 0.2251 0.1801 0.1501 0.09003 0.05002 
5 0.4170 0.3740 0.3101 0.2648 0.2328 0.1843 0.1532 0.09152 0.05070 
10 0.4401 0.3930 0.3238 0.2755 0.2413 0.1904 0.1580 0.09400 0.05195 
15 0.4669 0.4145 0.3391 0.2872 0.2507 0.1972 0.1633 0.09680 0.05340 
20 0.4977 0.4390 0.3561 0.3001 0.2610 0.2047 0.1691 0.09996 0.05507 
25 0.5334 0.4667 0.3749 0.3143 0.2723 0.2129 0.1756 0.1035 0.05698 
30 0.5747 0.4980 0.3958 0.3299 0.2847 0.2219 0.1827 0.1075 0.05916 
35 0.6224 0.5333 0.4187 0.3469 0.2982 0.2318 0.1905 0.1120 0.06166 
40 0.6777 0.5732 0.4441 0.3655 0.3130 0.2426 0.1992 0.1171 0.06451 
45 0.7417 0.6181 0.4719 0.3859 0.3292 0.2546 0.2088 0.1227 0.06777 
50 0.8159 0.6683 0.5023 0.4081 0.3469 0.2677 0.2195 0.1292 0.07150 
55 0.9017 0.7244 0.5355 0.4322 0.3662 0.2822 0.2313 0.1364 0.07577 
60 1.000 0.7864 0.5715 0.4585 0.3873 0.2981 0.2445 0.1447 0.08067 
65 1.113 0.8543 0.6105 0.4870 0.4104 0.3158 0.2592 0.1540 0.08632 
70 1.238 0.9275 0.6522 0.5178 0.4357 0.3354 0.2756 0.1647 0.09285 
75 1.374 1.005 0.6966 0.5511 0.4632 0.3571 0.2941 0.1770 0.1004 
80 1.515 1.084 0.7434 0.5869 0.4934 0.3813 0.3148 0.1910 0.1093 
85 1.650 1.162 0.7920 0.6254 0.5263 0.4083 0.3383 0.2073 0.1197 
90 1.763 1.236 0.8420 0.6664 0.5623 0.4385 0.3649 0.2262 0.1320 
95 1.840 1.300 0.8925 0.7101 0.6017 0.4724 0.3952 0.2482 0.1467 
100 1.870 1.350 0.9427 0.7565 0.6447 0.5105 0.4298 0.2742 0.1643 
105 1.851 1.384 0.9915 0.8053 0.6916 0.5537 0.4696 0.3050 0.1857 
110 1.793 1.400 1.038 0.8564 0.7429 0.6025 0.5156 0.3418 0.2119 
115 1.710 1.401 1.082 0.9098 0.7987 0.6580 0.5689 0.3862 0.2445 
120 1.617 1.389 1.118 0.9562 0.8596 0.7213 0.6313 0.4403 0.2854 
125 1.523 1.366 1.158 1.018 0.9257 0.7938 0.7046 0.5071 0.3378 
130 1.440 1.345 1.191 1.081 0.9975 0.8771 0.7915 0.5906 0.4060 
135 1.364 1.316 1.220 1.143 1.075 0.9726 0.8948 0.6964 0.4968 
140 1.298 1.285 1.246 1.205 1.159 1.084 1.019 0.8332 0.6205 
145 1.242 1.255 1.268 1.267 1.249 1.210 1.168 1.013 0.7941 
150 1.199 1.234 1.289 1.329 1.345 1.355 1.349 1.255 1.047 
155 1.163 1.219 1.313 1.391 1.446 1.530 1.575 1.591 1.433 
160 1.136 1.204 1.334 1.454 1.553 1.711 1.836 2.065 2.053 
165 1.116 1.197 1.357 1.516 1.664 1.936 2.167 2.767 3.134 
170 1.102 1.193 1.384 1.578 1.777 2.176 2.554 3.813 5.206 
175 1.099 1.190 1.413 1.640 1.890 2.412 2.967 5.322 8.384 
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Table 3. Function fR(α,εpn) = fσσsin2α, defined by Eq. (4.13) 
 

εpn = εp/εn α 
0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
5 0.1482 0.1342 0.1129 0.09740 0.08565 0.06901 0.05778 0.03500 0.01957
10 0.2878 0.2622 0.2225 0.1933 0.1708 0.1386 0.1166 0.07132 0.04014
15 0.4196 0.3843 0.3291 0.2877 0.2555 0.2088 0.1765 0.1091 0.06183
20 0.5440 0.5011 0.4327 0.3807 0.3399 0.2798 0.2377 0.1484 0.08475
25 0.6618 0.6128 0.5337 0.4726 0.4239 0.3516 0.3002 0.1895 0.1090 
30 0.7734 0.7198 0.6321 0.5632 0.5078 0.4243 0.3643 0.2325 0.1349 
35 0.8792 0.8224 0.7280 0.6528 0.5916 0.4980 0.4299 0.2777 0.1625 
40 0.9797 0.9209 0.8217 0.7415 0.6754 0.5730 0.4974 0.3253 0.1921 
45 1.075 1.016 0.9133 0.8294 0.7593 0.6493 0.5669 0.3756 0.2240 
50 1.166 1.106 1.003 0.9165 0.8435 0.7271 0.6386 0.4289 0.2585 
55 1.253 1.194 1.091 1.003 0.9280 0.8066 0.7128 0.4856 0.2960 
60 1.335 1.278 1.177 1.089 1.013 0.8879 0.7897 0.5462 0.3370 
65 1.414 1.360 1.261 1.175 1.099 0.9713 0.8696 0.6111 0.3821 
70 1.489 1.438 1.344 1.260 1.185 1.057 0.9529 0.6809 0.4318 
75 1.561 1.514 1.426 1.345 1.272 1.145 1.040 0.7563 0.4869 
80 1.630 1.587 1.506 1.430 1.360 1.236 1.131 0.8380 0.5485 
85 1.695 1.658 1.585 1.515 1.449 1.330 1.226 0.9269 0.6177 
90 1.758 1.727 1.663 1.600 1.540 1.427 1.326 1.024 0.6958 
95 1.818 1.793 1.740 1.685 1.631 1.527 1.431 1.130 0.7847 
100 1.875 1.857 1.815 1.770 1.724 1.631 1.542 1.248 0.8864 
105 1.930 1.918 1.890 1.856 1.818 1.739 1.660 1.377 1.004 
110 1.982 1.978 1.963 1.941 1.914 1.852 1.784 1.521 1.140 
115 2.031 2.035 2.035 2.026 2.011 1.968 1.915 1.681 1.299 
120 2.078 2.091 2.106 2.112 2.110 2.090 2.054 1.859 1.488 
125 2.123 2.144 2.176 2.197 2.210 2.216 2.202 2.060 1.712 
130 2.165 2.194 2.244 2.282 2.311 2.346 2.359 2.285 1.980 
135 2.204 2.242 2.310 2.367 2.413 2.482 2.524 2.540 2.306 
140 2.240 2.288 2.375 2.450 2.516 2.622 2.700 2.828 2.705 
145 2.273 2.330 2.436 2.532 2.618 2.766 2.884 3.153 3.198 
150 2.303 2.369 2.495 2.611 2.719 2.912 3.076 3.521 3.811 
155 2.329 2.405 2.550 2.687 2.818 3.059 3.277 3.935 4.580 
160 2.352 2.436 2.599 2.758 2.911 3.204 3.477 4.394 5.548 
165 2.371 2.462 2.642 2.821 2.996 3.341 3.675 4.893 6.763 
170 2.385 2.482 2.677 2.873 3.069 3.462 3.856 5.410 8.252 
175 2.393 2.494 2.697 2.902 3.110 3.532 3.963 5.890 9.941 
180 2.397 2.500 2.710 2.923 3.142 3.592 4.062 6.130 11.10 
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Table 4. Function ν(α,εpn) defined as the smallest positive root of Eq. (5.17) 
 

εpn = εp/εn α 
0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00 

0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
5 0.5127 0.5114 0.5094 0.5081 0.5070 0.5056 0.5047 0.5028 0.5015
10 0.5260 0.5232 0.5192 0.5164 0.5143 0.5114 0.5094 0.5056 0.5031
15 0.5400 0.5357 0.5294 0.5250 0.5217 0.5173 0.5143 0.5085 0.5047
20 0.5547 0.5487 0.5399 0.5339 0.5294 0.5233 0.5193 0.5114 0.5063
25 0.5703 0.5623 0.5509 0.5430 0.5373 0.5295 0.5244 0.5144 0.5079
30 0.5867 0.5766 0.5623 0.5525 0.5455 0.5358 0.5296 0.5175 0.5096
35 0.6040 0.5915 0.5741 0.5623 0.5538 0.5424 0.5349 0.5206 0.5113
40 0.6222 0.6071 0.5863 0.5725 0.5625 0.5491 0.5405 0.5238 0.5131
45 0.6414 0.6235 0.5990 0.5829 0.5714 0.5560 0.5461 0.5271 0.5149
50 0.6617 0.6405 0.6122 0.5937 0.5806 0.5632 0.5520 0.5305 0.5167
55 0.6830 0.6582 0.6258 0.6049 0.5902 0.5706 0.5580 0.5340 0.5187
60 0.7052 0.6766 0.6398 0.6164 0.6000 0.5782 0.5643 0.5377 0.5207
65 0.7285 0.6956 0.6543 0.6283 0.6102 0.5861 0.5708 0.5416 0.5228
70 0.7524 0.7151 0.6692 0.6406 0.6207 0.5944 0.5776 0.5456 0.5250
75 0.7769 0.7351 0.6845 0.6533 0.6316 0.6029 0.5847 0.5498 0.5274
80 0.8015 0.7552 0.7002 0.6663 0.6429 0.6119 0.5922 0.5543 0.5299
85 0.8256 0.7753 0.7161 0.6798 0.6545 0.6212 0.6000 0.5590 0.5326
90 0.8485 0.7952 0.7323 0.6936 0.6667 0.6310 0.6082 0.5641 0.5354
95 0.8697 0.8145 0.7486 0.7078 0.6792 0.6413 0.6169 0.5695 0.5385
100 0.8886 0.8330 0.7650 0.7224 0.6923 0.6521 0.6261 0.5753 0.5419
105 0.9050 0.8505 0.7815 0.7373 0.7059 0.6635 0.6359 0.5817 0.5456
110 0.9190 0.8667 0.7978 0.7526 0.7200 0.6756 0.6465 0.5885 0.5497
115 0.9308 0.8817 0.8140 0.7682 0.7347 0.6885 0.6578 0.5961 0.5542
120 0.9407 0.8955 0.8300 0.7841 0.7500 0.7022 0.6700 0.6045 0.5593
125 0.9491 0.9080 0.8456 0.8004 0.7660 0.7169 0.6834 0.6139 0.5651
130 0.9564 0.9194 0.8609 0.8169 0.7826 0.7327 0.6980 0.6245 0.5718
135 0.9627 0.9299 0.8759 0.8337 0.8000 0.7497 0.7140 0.6366 0.5796
140 0.9682 0.9395 0.8905 0.8508 0.8182 0.7682 0.7318 0.6506 0.5889
145 0.9732 0.9484 0.9048 0.8681 0.8372 0.7884 0.7518 0.6671 0.6002
150 0.9777 0.9567 0.9187 0.8858 0.8571 0.8104 0.7742 0.6868 0.6142
155 0.9818 0.9645 0.9325 0.9037 0.8780 0.8347 0.7998 0.7109 0.6323
160 0.9858 0.9720 0.9460 0.9220 0.9000 0.8614 0.8290 0.7410 0.6566
165 0.9895 0.9792 0.9594 0.9407 0.9231 0.8910 0.8629 0.7798 0.6909
170 0.9930 0.9862 0.9728 0.9598 0.9474 0.9238 0.9021 0.8316 0.7432
175 0.9965 0.9931 0.9863 0.9796 0.9730 0.9601 0.9477 0.9027 0.8322
180 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Figure Captions 

Fig. 1. Sketch of a particle at the interface between water and nonpolar fluid (oil, air). γ is the 
interfacial tension; R and rc are the radii of the particle and the three-phase contact line; α and 
θ are the central and contact angle; ψc is the meniscus slope angle at the contact line; F is a 
normal force acting on the particle, which can be of electric and/or gravitational origin. 

Fig. 2. In zero-order approximation, the interface water–nonpolar fluid, Snw, is planar. Spn and 
Spw denote the interfaces particle–nonpolar fluid and particle–water, respectively. 

Fig. 3. Introduction of toroidal coordinates (ξ,η). The position of the contact line coincides 
with the pole, A+; the interfaces Snw, Spn, and Spw correspond to the coordinate surfaces ξ = 0, 
ξ = ξc, and ξ = π + ξc, respectively, where ξc ≡ π −α (see Fig. 2). 

Fig. 4. Plot of De and Ce vs. α calculated by means of Eqs. (4.6) and (4.12); εpn = 1. 

Fig. 5. Plots of Je vs. x1 for different values of α denoted in the figure. The continuous lines 
are calculated from Eqs. (4.3) and Eq. (4.14). The circles are computed independently, by 
numerical solution of the original system partial differential equations; see Section 5.2 in Ref. 
[8]. 

Fig. 6. Plots of Je vs. x1 for smaller values of α denoted in the figure (cf. Fig. 4). The curves 
for α = 5° and 10° are calculated from Eqs. (4.3) and Eq. (4.14). The curve for α = 0 is 
computed by means of Eq. (A.14) in Appendix A. 

Fig. 7. Dependence of the force coefficients fσσ and fR ≡ fσσ sin2α on α for εpn = 1. The curves 
are calculated with the help of Eqs. (4.3) and (4.13). 

Fig. 8. Dependence of D on α for various εpn denoted in the figure. The curves are calculated 
with the help of Eq. (5.9). 

Fig. 9. Dependence of ν on α for various εpn denoted in the figure; ν is calculated as the 
smallest positive root of Eq. (5.17). 

Fig. 10. Dependence of C on α for various εpn denoted in the figure. The curves are calculated 
as explained in the text. 

Fig. 11. Dependence of the force coefficient fR on α for various εpn denoted in the figure. The 
curves are calculated as explained in Section 5.5. 

Fig. 12. Plots of J vs. x1 for different values of α denoted in the figure. (a) εpn = 0.5. 
(b) εpn = 2. The continuous lines are calculated as explained in Section 5.5. The circles are 
computed independently, by numerical solution of the original system partial differential 
equations; see Section 5.2 in Ref. [8]. 

Fig. 13. Two particles attached to the boundary water–nonpolar fluid, which are separated at a 
center-to-center distance L. For L >> rc, the electric field of each particle in isolation is 
identical to the electric field of a dipole, whose dipole moment is given by Eq. (6.2). 

Fig. 14. Plot of Dsin3α vs. α for various εpn denoted in the figure. The dipole moment pd ∝ 
Dsin3α increases monotonically with the rise of α; see Eq. (6.2). The values of D are the same 
as in Fig. 8. 

Fig. 15. Plot of pd /pd* vs. α for various εpn. The curves are calculated by means of Eq. (6.7) 
where D is the same as in Fig. 8. 



 38

 
 

 
 
 
Fig. 1. Sketch of a particle at the interface between water and nonpolar fluid (oil, air). γ is the 
interfacial tension; R and rc are the radii of the particle and the three-phase contact line; α and 
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normal force acting on the particle, which can be of electric and/or gravitational origin. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 2. In zero-order approximation, the interface water–nonpolar fluid, Snw, is planar. Spn and 
Spw denote the interfaces particle–nonpolar fluid and particle–water, respectively. 
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Fig. 3. Introduction of toroidal coordinates (ξ,η). The position of the contact line coincides 
with the pole, A+; the interfaces Snw, Spn, and Spw correspond to the coordinate surfaces ξ = 0, 
ξ = ξc, and ξ = π + ξc, respectively, where ξc ≡ π −α (see Fig. 2). 
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Fig. 4. Plot of De and Ce vs. α calculated by means of Eqs. (4.6) and (4.12); εpn = 1. 
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Fig. 5. Plots of Je vs. x1 for different values of α denoted in the figure. The continuous lines 
are calculated from Eqs. (4.3) and Eq. (4.14). The circles are computed independently, by 
numerical solution of the original system partial differential equations; see Section 5.2 in Ref. 
[8]. 
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Fig. 6. Plots of Je vs. x1 for smaller values of α denoted in the figure (cf. Fig. 4). The curves 
for α = 5° and 10° are calculated from Eqs. (4.3) and Eq. (4.14). The curve for α = 0 is 
computed by means of Eq. (A.14) in Appendix A. 
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Fig. 7. Dependence of the force coefficients fσσ and fR ≡ fσσ sin2α on α for εpn = 1. The curves 
are calculated with the help of Eqs. (4.3) and (4.13). 
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Fig. 8. Dependence of D on α for various εpn denoted in the figure. The curves are calculated 
with the help of Eq. (5.9). 
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Fig. 9. Dependence of ν on α for various εpn denoted in the figure; ν is calculated as the 
smallest positive root of Eq. (5.17). 
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Fig. 10. Dependence of C on α for various εpn denoted in the figure. The curves are calculated 
as explained in the text. 
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Fig. 11. Dependence of the force coefficient fR on α for various εpn denoted in the figure. The 
curves are calculated as explained in Section 5.5. 
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Fig. 12. Plots of J vs. x1 for different values of α denoted in the figure. (a) εpn = 0.5. 
(b) εpn = 2. The continuous lines are calculated as explained in Section 5.5. The circles are 
computed independently, by numerical solution of the original system partial differential 
equations; see Section 5.2 in Ref. [8]. 
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Fig. 13. Two particles attached to the boundary water–nonpolar fluid, which are separated at a 
center-to-center distance L. For L >> rc, the electric field of each particle in isolation is 
identical to the electric field of a dipole, whose dipole moment is given by Eq. (6.2). 
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Fig. 14. Plot of Dsin3α vs. α for various εpn denoted in the figure. The dipole moment pd ∝ 
Dsin3α increases monotonically with the rise of α; see Eq. (6.2). The values of D are the same 
as in Fig. 8. 
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Fig. 15. Plot of pd /pd* vs. α for various εpn. The curves are calculated by means of Eq. (6.7) 
where D is the same as in Fig. 8. 


