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Abstract. Here, we solve the problem about the electric field of a charged dielectric
particle, which is adsorbed at the boundary water—nonpolar fluid (oil, air). The solution of this
problem is a necessary step for the theoretical prediction of the electrodipping force acting on
such particle, as well as of the electrostatic repulsion and capillary attraction between two
adsorbed particles. In accordance with the experimental observations, we consider the
important case when the surface charges are located at the boundary particle—nonpolar fluid.
To solve the electrostatic problem, the Mehler-Fock integral transform is applied. In the
special case when the dielectric constants of the particle and the nonpolar fluid are equal, the
solution is obtained in a closed analytical form. In the general case of different dielectric
constants, the problem is reduced to the numerical solution of an integral equation, which is
carried out by iterations. The long-range asymptotics of the solution indicates that two similar
particles repel each other as dipoles, whose dipole moments are related to the particle radius,
contact angle, dielectric constant and surface charge density. The investigated short-range
asymptotics ensures accurate calculation of the electrodipping-force. For a fast and
convenient application of the obtained results, the derived physical dependencies are tabulated

as functions of the contact angle and the dielectric constants.
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1. Introduction

The problem about the interactions of electrically charged colloidal particles adsorbed at
an oil-water interface has attracted a considerable attention [1-13] in relation to the properties
of particle monolayers [1,2,6,7,11-16], formation of particle-stabilized (Pickering) emulsions
[17-21], and colloidosomes [3,22-24].

Especially, it was established that in some cases the adsorbed particles experience a
strong lateral repulsion that is insensitive to the addition of electrolyte (up to 1 M NacCl) in the
aqueous phase [1,2,6]. It was proven that this effect is due to the presence of electric charges
at the boundary particle-oil [1,2,6]. These charges induce a direct electrostatic repulsion
between two particles across the oily phase. The latter does not contain dissolved ions, and
there the electrostatic interactions are strong and long-range across the oil. Similar effect is

observed when the nonpolar fluid is air, instead of oil [8,13].

A charged dielectric particle (silica, glass, latex, etc.), which is located in the oily phase
near the phase boundary with water, is attracted by the oil-water interface due to the image-
force effect [21]. For the same physical reasons, a particle that is attached to the oil-water
interface experiences a normal “electrodipping” force, which pushes it into water [8]. The
latter force leads to the formation of a concavity (meniscus, dimple) around the attached
particle. The overlap of the menisci around two such particles gives rise to a lateral capillary
attraction between them [25,26]. This interaction was termed “electric-field-induced capillary
attraction” by Nikolaides et al. [3], who first found out experimentally that ordered particles at
the surface of a water drop in oil are confined into potential wells. The presence of wells was
explained by the overlap of the capillary attraction and the electrostatic repulsion between two

particles [3].

The electrodipping force, F®, was directly detected in experiments with hydrophobized
glass particles floating at the boundary water-tetradecane [8]. The theoretical investigation
indicates that this force represents a sum of contributions due to the presence of electric

charges at the boundaries particle-water, F*", and particle-nonpolar fluid, F™ [8]:
FE) = E0) 4 FO) (1.1)

In experiments with relatively large particles, of radius R = 200 — 300 um, it has been

established that F® is insensitive to the concentration of NaCl in the agueous phase, which



means that for the investigated system F™ is negligible, and F®) ~ F™, i.e. the electrodipping

force is induced by electric charges at the boundary particle—oil [8].

Theoretical expression for the calculation of F™ was derived [8]:
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Here « is the central angle determined by the position of the contact line on the particle
surface (Fig. 1); & and &, are the dielectric constants of the particle and of the nonpolar fluid,
respectively; opn is the surface electric charge density at the boundary particle-oil; the
dimensionless function f(e,&n) was computed in Ref. [8], by numerical solution of the
electrostatic boundary problem, and the numerical results were tabulated (see Table 4

therein).

As illustrated in Fig. 1, the normal force is counterbalanced by the respective projection
of the interfacial tension: F = 2zarcysinyt, where r. = Rsina is the contact-line radius, yis the
interfacial tension, and . is the meniscus slope angle at the contact line. In cylindrical
coordinates (r,z), the meniscus profile z = £(r) obeys the Laplace equation of capillarity,

which is linearized for the case of small meniscus slope (sin?y << 1):
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where g°= Apgl/y (Ap — difference between the mass densities of the two phases; g —
acceleration due to gravity); pe(r) is pressure (Maxwell stress) exerted at the oil-water
interface, which is induced by the electric field of the charged particle. Equation (1.3) has to
be solved along with the boundary conditions oZ/or = tany, at r = re, and £ = 0 at r—o0. In
Ref. [8], we determined pe(r) from the numerical solution of the electrostatic boundary
problem, and then ¢{r) was computed by solving numerically Eq. (1.3). In its own turn, the
calculation of ¢ is a prerequisite for theoretical prediction of the electric-field-induced
capillary attraction between two particles. The experiment [3,12,13,15,16,19] indicates that

such attraction is really present and plays an important role.

In summary, at present state of the theory, the quantitative description of the basic
physical parameters, such as F™, pg(r), £(r), etc., needs a numerical solution of the
electrostatic boundary problem, as described in Ref. [8]. There, an appropriate numerical

method was used with a grid of 101 x 101 subdomains. To verify the latter numerical method,



we solved the same problem by using the alternating direction implicit (ADI) method [27]
using the general three-level scheme with 2001 x 2001 subdomains. The results obtained by
the two methods were coincident. Although the use of the latter two numerical methods, in
principle, solves the problem, their application is time consuming and it demands a
corresponding mathematical and computational qualification of the user. It would be much

easier if some analytical expressions could be obtained.

In [8], we proposed a simple semiempirical expression for pe(r):

pel(r):(r—rc;+r5”‘ (1.4)
where A; and u are constants (0 < x4 < 1). The parameter x# was determined by fit of
experimental data. In general, Eq. (1.4) gives the correct functional dependence of pg(r) at
r—oo and r—tre, supposedly u is accurately determined. However, the comparison with the
exact numerical solution for pe(r) shows that Eq. (1.4) is not sufficiently accurate to allow
correct computation of £(r) by integration of Eq. (1.3). This is due to the fact that actually A;

IS not a constant, but exhibits some dependence on r.

Our aim in the present paper is to analyze theoretically the electrostatic boundary
problem and to derive equations and analytical expressions for the basic physical properties of
the investigated system (Fig. 1). The results would allow one to carry out easier and faster
calculations of various physical characteristics of the system such as the electrodipping force,
F™: the electric field distribution; the electrostatic interaction between two floating particles;
the electric pressure, pe(r), and meniscus profile, £(r), and the electric-field-induced capillary
attraction. In other words, our goal in the present paper is to find an alternative and more
convenient way for quantitative description of the investigated system, in comparison with the

purely numerical approach proposed in Ref. [8].

The paper is organized as follows. In Section 2, the basic equations and boundary
conditions are formulated in terms of toroidal coordinates, which correspond to the symmetry
of the system. In Section 3, the Mehler-Fock integral transform is applied to solve the
problem. In Section 4, a closed analytical solution is obtained for the special case when
& = &. In Section 5, the general case, &, # &, is considered, and the problem is reduced to the
solution of an integral equation. Analytical expressions for the asymptotic behavior of the
electric field at short and long distances are derived. In Section 6, the obtained long-range

asymptotics is applied to quantify the force and energy of interaction between two adsorbed



particles at long distances. The limits of applicability of the present theory and possible
extensions are discussed in Section 7. Appendices A, B, and C describe fragments of the
theoretical derivations and give details about the computational procedures. The basic
physical dependences derived in this study are tabulated in Appendix D. The tables represent
an important part of the paper, because they give a possibility the results to be applied without
repeating the numerical computations. On the other hand, if one decides to reproduce the
developed computational procedures, the tables allow one to test of the respective computer

programs.

2. Physical system and basic equations
2.1. Equations and boundary conditions

We consider a spherical dielectric particle of radius, R, and dielectric constant, &,
attached to the interface between water and a nonpolar fluid (oil, air, etc.); see Fig. 2. As a
zero-order approximation, we will assume that the interface water—nonpolar fluid is planar.
After determining the electrodipping force and the electric stresses for a flat interface, at the
next step one can calculate the interfacial deformation, {r); see Fig. 1 and Eq. (1.3). The
position of the particle at the interface is determined by the central angle, «, which coincides
with the three-phase contact angle if the oil-water interface is planar (Fig. 2). In accordance
with the frequently used convention, we have « < 90° for hydrophilic particle, and « > 90° for

hydrophobic particle.

Our aim is to determine the electric field induced by surface charges, which are located
at the boundary particle-nonpolar fluid (Sp, in Fig. 2) with density opn. In the two dielectric

phases, the potential of the electric field obeys the Laplace equation:
Vip,=0 inQ, and V?p, =0 inQ, (2.1)

where V? is the Laplace operator; Q, and Q, are the spatial domains occupied by the particle
and the nonpolar fluid, respectively. The dielectric constant of water is presumed to be much
greater than those of the particle and the nonpolar fluid: &, >> &, &. For this reason, the
electric field created by charges, located in the nonpolar phases, practically does not penetrate
into the water phase; see, for example, the conventional problem for the image force [28] and
for a hydrophobic particle near the oil-water interface [21]. Experimentally, the non-

penetration of the field into water is manifested as independence of the configuration of the



adsorbed particles on the electrolyte concentration in the aqueous phase [6,8]. Thus, in first
approximation, the role of the water is to keep the electric potential constant at the boundaries
Snw and Spw (Fig. 2). Because the latter constant can be set zero, we obtain the following two

boundary conditions [8]:

¢, =0 atS,, and ¢,=0 atS,, (2.2)

At the third interface, Syn, we impose the standard boundary conditions for continuity of the

electric potential and the relation between the normal electric-field components [28]:

¢n =0, and n-(e,Vo,-&Vep,)=4r0, atsS (2.3)

pn

where V is the gradient operator, and n is the outer unit normal to the particle surface, Syn.

2.2. Curvilinear coordinates

In Ref. [8] the problem (2.1)—(2.3) was solved numerically with the help of modified
toroidal coordinates. Because our purpose here is to obtain analytical solution, it is more
convenient to use the conventional toroidal coordinates, &and 7, defined as follows [29-31]:

r =%sinh77; z =%°sin§ and h=coshzy—cosé (2.4)

Here h is a metric coefficient. The Lame coefficients of the toroidal coordinate system, hg h,,
and hy, are [29-31]:

h; =h, =25 hy = Esinhy (25)
The position of the contact line is determined by the pole A, (7 — +x); see Fig. 3. The axis of
revolution corresponds to 7 = 0; the interfaces Spw, Spn, and Spw (Fig. 2) have equations & = 0;
&= &, and &=+ &, respectively (Fig. 3). Here, & is simply related to the angle «:
& = m— a. The coordinate surfaces of constant 7 are toroids obtained by rotation of the
circumference [29-31]:

2
(r—r, cothn)? + 22 = — r°2 (2.6)
sinh“ n

Likewise, the coordinate surfaces of constant & are spheres obtained by rotation of the

circumference [29-31]:



r2

ré+(z-r,cot&)? = —— (2.7)

sin? &
It is convenient to introduce dimensionless electric potentials, @, and ®:

4
9 = 1,0,®, (k=n,p) (2.8)
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In view of the axial symmetry of the system, in toroidal coordinates Eq. (2.1) acquires the
form [29]:

isinhn8®k)+i sinhn 0®,
o h 0&° on h  Ony

=0 inQ, (k=n,p) (2.9)

Correspondingly, the boundary conditions, Egs. (2.2) and (2.3), become:

®, =0 até=0 and @, =0 at&=r+¢ (2.10)

) od
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Here, as usual, gn = &/&. The electric field intensity in the nonpolar fluid is E = -V ¢,. From
Eq. (2.10), it follows that the tangential component of E at the flat interface, Sny, is zero,
while the normal component is:

oD,
¢

até=0 (2.12)
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where we have substituted ¢, from Eq. (2.8) and h; from Eq. (2.5). As established in Ref. [8],
the electrodipping force, F™, exerted on the particle can be expressed as an integral of E,:

o 2
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— see Egs. (5.14), (5.18) and (5.19) in Ref. [8]; F™ is directed toward the water phase.

3. Solution by integral transform
3.1. Application of the Mehler-Fock transform
To separate the variables in Eq. (2.9), we first replace @y by a new dependent variable,

¥, [30-32]:

@, =h"2¥, (k=n,p) (3.1)



Then, Eq. (2.9) acquires the form [30-32]:

0’

LW ]+ —
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where the linear differential operator, L[], is:

L[¥]=—— 2 (sinhy
sinhn on on

oY, V¥
—) +Z (3.3)

A substitution u = cosh 7 transforms the operator L[] into the known Legendre operator:

0, 2 oy, ¥
L[¥]=—[(u?-1)—]+— 3.4
[]au[( )au] 2 (3.4)
The form of the operator L[¥] suggests that the solution of Eg. (3.2) can be found by means
of the Mehler-Fock integral transform [32-38]:

W(U) = [Py (W)BE)dr (LU <c0) (35)
0

B(r) = rtanh(m)T P/osir (U)W(u)du (3.6)
1

Equations (3.5) and (3.6) represent the forward and inverse transformations. Correspondingly,
Y(u) and B(7) represent the original and image functions. P_y+i(u) is the Legendre function
of the first kind [39-41]. Here, we are dealing with Legendre function of complex index,
-1/2 + iz (ris real; i is the imaginary unit), that could be expressed by means of the following
real integral [32,42]:

21/2 ©
.1/, (COSN 7) = “—coth(zz)
T

sin(zy) dy (37)
, (coshy —cosh ;)" '

The Mehler-Fock transform [32-38], and the generalized Mehler-Fock transform [38,44,45]
have found applications for solving various problems of similar geometry [42,46,47]. In view

of Eq. (3.5), we will seek the unknown function in the form:
‘I’k(é,n)=IBk(§,r)K(77,f)dr (k=n,p) (3.8)
0

where K(7,7) =P, (coshz) (3.9)



The kernel of the integral transform, K(7,7), obeys the equation:
LIK (7, 7)1 =~ *K (1,7) (3.10)

The substitution of Eg. (3.8) into Eq. (3.2) yields:

0°B .
—655 =7°B, inQ, (k=n,p) (3.11)
The solution of Eq. (3.11), satisfying the boundary condition, Eq. (2.10), and ¥, = Wy at & =
&, reads:
sinh(&7) sinh[(7 + &, — &)7]
B,(&,7)=Y,(r)——=—=; B, ({,7)="Y, - 3.12
n(6:7) = ¥s(7) Sinh(E.7) p(6,7) =¥ (2) Sinh(z 1) (3.12)

where Wy(7) is the image of the dimensionless electric potential at the boundary particle—

nonpolar fluid.

To determine Wy(z), we first aply Eqg. (3.1) to represent Eq. (2.11) in the form:

oY 0¥, sing -3/2
8§n —&p Y + 2h° (Ph —em¥p)=h"" até=¢& (3.13)

Here, we have h; = cosh7 — cos&.. On the other hand, the Lebedev formula [48] yields:

0

(coshn—cosé& )™ = 21/2]%@?}))7]“%7)% (3.14)

The differentiation of Eq. (3.14) with respect to & yields:

ho3/2 _ 2%/ mTSinh[(ﬂ—fc)T]
¢ sing, ; cosh(z7)

K(n,7)dr (3.15)

In view of Egs. (3.8), (3.12) and (3.14), one can bring Eq. (3.13) into the form of an integral

equation for Ws(7):

0

| {[Coth(fcr) + &y COth(77)] ¥, (7) -

0

2312 sinh[(z - &,)7]
sing, cosh(zrr)

}Z’K (n,7)dz
(3.16)
sing,

—= | Y. (0)K(n,7)d
coshn—coséc-[ (K. )de

1
= _E(l_gpn)
0

In Section 5.1 we will demonstrate that Eq. (3.16) can be transformed into the standard form

of a Fredholm integral equation of the second kind, which has a convenient numerical



solution for W(z). The respective numerical procedure is much faster than the procedure for
solving the partial differential equations in Ref. [8]. In addition, Eq. (3.16) enables one to
derive useful asymptotic expressions for the behavior of the physical variables near the
contact line and far from it. Finally, for &n = 1, Eq. (3.16) has a closed analytical solution for

Y(7), which is described in Section 4.

3.2. Expressions for the physical quantities

Having once determined Wy(z), we can further determine the electric field inside the
particle and in the nonpolar fluid, by using Egs. (3.8) and (3.12). In particular, the electric
field at the boundary Sy (at z = 0, see Fig. 2) can be presented in the form:

Ar TP (1)
E,|,.o =———o0,,(coshyp-)¥21, I=[—""2K(n1)d 3.17
im0 ==~ (cosh 1) { S <0 (3.17)
In general, | = 1(7,a,&n). Combining Egs. (2.13) and (3.17) we derive the following

expression for the force coefficient:
f = % [17d[coshry -17° (3.18)
0

The flat interface S, corresponds to the domain r. < r < oo or, respectively, « > 1> 0. In the
calculations it is convenient to introduce the new variable x;, which has a finite domain of

variation:

fo _COShn=1 gy <) (3.19)
r sinhn

X

From the latter expression one derives:

coshn—-1= lez (3.20)
In terms of x4, Eq. (1.4) acquires the form:
A X
Per (%) =—5 (3.21)

r. (@L—x)™

Because pej o« EZZ|Z=0, we will seek E,|,=, in the form:

10



. _ Aroy, x:
z|z:0 - e (1_ X )1_V
n 1

(X, @, &pn) (3.22)

where 2(1 — v) =1 — u that is v= (1 + )/2; J is expected to be a function of bounded
variation (almost constant). Note that for x;—1, we have J — C = constant = 0; see Eq. (5.18).
The combination of Egs. (3.17), (3.20) and (3.22) yields:

2921 (7,0, 40

- (3.23)
(1+ Xl)3/2 (l_ X1)1/2

‘](Xliaigpn) =

where | is defined by Eq. (3.17), with W¢(7) being the solution of Eq. (3.16). In terms of J, the
electric pressure, pe, can be expressed in the form:
270 6

éh g2 pn Xy 2
X,) = E2| = J(X,a, 3.24
pel( l) 8 z |Z—0 €, (1 X1)2_2V [ ( 1 gpn )] ( )

In Section 5, we consider the general solution of Eq. (3.16), while in Section 4 we obtain and

discuss the analytical solution to the problem in the special case &, = &.

4. Analytical solution to the problem for & = &,
4.1. Solution of the integral equation

When the particle has the same dielectric constant as the nonpolar fluid, i.e. &n = &/ =

1, then Eq. (3.16) has an analytical solution:

2% Ginn(e, o) tanh(r ) Sl = o))

\Ps (T) = -
né, sinh[(7 + &,)7]

(4.1)

The substitution of Eq. (4.1) into Eq. (3.17), along with the identity & = 7 — «, leads to the

following expression for the integral I:
23/2 % tanh(zr) sinh(a7)

sina f[ sinh[(27 — a)7]

|e(77105) =1(n,al) = K(n, 7)rdz (4.2)

Here and hereafter, the subscript “e” means that the respective quantity is estimated at equal
& and &. The integral in Eq. (4.2) has to be solved numerically. In view of Eq. (3.9), K(7,7) is

related to the Legendre function, whose computation is time consuming. To speed up the

11



numerical procedure, in Eq. (4.2) we substituted the integral expression for P_i+i,, EQ. (3.7),

and carried out the integration with respect to z. The result reads (see Appendix B):

222y sin(2v, &) ]‘-’[sinh(x)sinh(x+77)]‘1’2sinh[ve(2x+77)]dX 4.3)
© (m+&)sina g {cosh[v, (2x+17)] - €os(2v, &)Y '
where v, =—* =" (4.4)

The integral in Eq. (4.3) converges well because at x—oo the integrand decays exponentially,

while at x—0 it behaves as x 2.

4.2. Asymptotics of the electric field far from the particle

Far from the particle (r >> r), we have x;—0 and 7—0. In this limit, Eq. (3.22)

acquires the form:

dr o
E, ~— P x3D () (z=0,r>>r; £ =1) (4.5)

n

In view of Egs. (3.23) and (4.2), we have introduced the notation:

De (a) =J (0,0!,1) = 23/2 qu (O,a) =

8 Ttanh(;r o)sinh(az) (4.6)
0

sina % sinh[(27 — a)7]

At the last step we have used the fact that K(0,7) = P_12:i{1) = 1. D¢() tends to a nonzero
constant (Fig. 4), and then asymptotically E, o x;°; see Eq. (4.5). Because x; = r./r, we have
E, oc 3 for r >> r, i.e. the electric field created by the particle at long distances behaves as
the electric field of a dipole. The function De(«) determines the dependence of the effective
dipole moment on the angle a. We calculated D¢(«) by solving numerically the integral in Eq.
(4.6). The results are tabulated (Table 1 in Appendix D, the column for &, = 1). The
computed plot of D, vs. « is shown in Fig. 4. For a—0 we have D.—1/(37) = 0.1061; see Eq.
(A.11) in Appendix A.

We should also note that the right-hand side of Eq. (4.5) represents the leading term of a
series expansion for x; << 1. It can be proven that the first neglected term in this expansion is

proportional to x;°.

12



4.3. Asymptotics of the electric field near the particle

Near the contact line on the particle surface (r—r¢), we have x;—1 and 7—+o0. In this

limit, the integral in Eq. (4.3) has the following asymptotic form:

512, o © _
|~ 2%y, sm(_2ve€fc)exp[_(ve +0.5)77]IMV8X2/20|(2X) (4.7)
T+é&,  sina o [exp(2x) —1]
The last integral can be taken analytically [49]. Thus we obtain:
1, =252y, IN2Vece) TVe £05) o, 4 5, (4.8)
M%sinag T(ve)

where T is the known gamma function [29,39-41]. From Eq. (3.14) we deduce:

1+

exp(-n) = 0<x, <1 (4.9)

Using Eqg. (4.9), we obtain the form of Eq. (4.8) for x; —> 1:

PLR sin(2v &) I'(v, +0.5)
e e 12

| 1-x,)"="° (4.10)

sina I'(ve)
In view of Eq. (4.10), the asymptotic form of Egs. (3.22) and (3.23) near the contact line is:

dro C.(a)
Ez|z:0 =- B =

& (- Xl)live

(x, 1) (4.11)

227 742 sin(v,a) T (v, +0.5)

Cel@) =3 al) = r—a sina  T(v,)

(4.12)

The function Ce() is plotted in Fig. 4 and tabulated (Table 2 in Appendix D, the column for
&n = 1). For a—0 we have Cc—1/(2"?z) = 0.2251; see Eq. (A.13) in Appendix A.

Because 0 < o < 7, Eq. (4.4) yields 0.5 < 1 < 1. Then, in view of Eq. (4.11), E,|;=0 has
an integrable divergence for x; — 1. On the other hand, the integral for the force coefficient,

foo, 1S cOnvergent. To check that, we substitute Eg. (3.20) into Eq. (3.18):

3
=84|2L§3 (4.13)
1 A=x0)

oo

For g, = 1, | = l¢ is to be substituted from Eq. (4.10). Then, the integrand in Eq. (4.13) is

o (1-x,)?"=72. Because 1. > 0.5, we have 2w, — 2 > —1; in other words the integral in Eq.

13



(4.13) is convergent. Note that such type of integrable singularities at edge-lines are typical
for problems related to the calculation of the electric field in wedge shaped (angular) spatial
domains; see e.g. Ref. [28]. In our case, the wedge is formed between the surfaces Sy, and Spw,

which intersect at the contact line, r = r¢ (Fig. 2).

4.4, Numerical results and discussion

Equations (3.22) and (3.24) indicate that we could calculate the electric field, E,|,=o, and
of the electric pressure, pe(X1), if the function J(X1, &, &n) is known. In the considered special

case, gn = 1, Eq. (3.23) acquires the form:

221, (.2)
(1+ Xl)3/2 (1_ X1)1/2+Ve

Jo(x, @) =3 (X, ) = (4.14)
where le and 1, are given by Egs. (4.3) and (4.4). Equation (3.21), which is a version of a
semiempirical formula proposed in Ref. [8], assumes that A; o J* is independent of x;; see Eq.
(3.24). With the help of Eq. (4.14) we could check whether this assumption is close to the

reality.

In Fig. 5 we have plotted Je vs. x; for several values of «. One sees that J. is practically
independent of x; only for & ~ 90°. On the other hand, for « ~ 150° J. varies by one order of
magnitude. The accurate calculation of E,-o and pe(x;) demands Je to be accurately
calculated. The continuous lines in Fig. 5 are obtained from Eq. (4.14) by means of numerical
integration of Eq. (4.3). The points denoted by circles in Fig. 5 are calculated independently,
by means of the alternative procedure for solution of partial differential equations described in
section 5.2 of Ref. [8]. The excellent agreement between the two independent solutions

confirms the accuracy of the used numerical procedures.

Figure 6 shows plots of Je vs. x; again, but this time for smaller values ¢, viz. = 0°, 5°
and 10°. The curve for « = 0 is drawn by means of the analytical expression derived in
Appendix A; see Eq. (A.14) therein. One sees that the curves in Fig. 6 vary between 0.1 and

0.215, i.e. the magnitude of J. could change about two times.

Plot of the force coefficient f,5 vs. « is shown in Fig. 7 for &, = 1. 5 is calculated from
Eq. (4.13), where | = I, is obtained from Eqg. (4.3). In both Egs. (4.13) and (4.3) the integration

is carried out numerically. As seen in Fig. 7, f,. varies by orders of magnitude as a function of
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a, and has a minimum at « ~ 65°. In addition, f,. exhibits a logarithmic divergence at a—0;
see Appendix A. The latter facts indicate that f,., is not a convenient parameter, from both
computational and physical viewpoint. To find a more convenient force coefficient, we

considered the following three equivalent expressions for the electrodipping force:

4z

F(n) — O-gnRZ(l—COSOt)f(O-’,Spn)

n

A
=— ot fo (@ 55) (4.15)

n

4
= _EO_SHRZ 1ER(a{"("pn)

n

The coefficient f(a,5n) was computed and tabulated in [8], see Eq. (1.2); the coefficient
foor,€pn) Was also used in the theoretical derivations therein. The coefficient fr = fosin’a is
plotted vs. « in Fig. 7 for g, = 1. One sees that fr exhibits a simple monotonic dependence on
a, and that fz is regular in the whole interval 0< o < 7, where 0< fr < 7. The greatest value,
fr(a=7) = 7z, corresponds to a spherical particle into oil, that has only a point contact with the

water; the same limiting value is obtained independently in Ref. [21].

Physically, the increase of fz with « (Fig. 7) corresponds to the fact that for a particle of
fixed radius, R, with the rise of ¢, the area of the electrically charged interface Sp,, increases
(Fig. 2). For greater charge at Sy, the electrodipping force, F™ and the respective force

coefficient, fr, must be also greater.

The transparent physical meaning of fr(e), and its regular behavior (Fig. 7), make fg the
most convenient force coefficient. For this reason, in Table 3 of Appendix D we have
tabulated the dependence fr(a,&n) for the needs of a fast and convenient calculation of the
electrodipping force F™. For &n = 1, fr is computed by integration in Egs. (4.13) and (4.3).

The columns with &, = 1 are computed with the help of the general theory in Section 5.

5. Solution to the general problem, for & # &,

In the general case when &, # &, we cannot find a simple analytical solution of Eq.
(3.16) for W¢(2), like Eq. (4.1). Nevertheless, in this case Eq. (3.16) can be solved by using a

convenient and accurate procedure that is described in Section 5.1.
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5.1. Reduction of the problem to Fredholm equation

First, we subject Eq. (3.6) to the inverse Mehler-Fock transform, Eq. (3.16):

23'2(1— p) sinh(az)
sing,  sinh(zr)

Y (7) = 92(7)+ﬂ5in§c92(f)T‘Ps(?)U (r,7)d7 (5.1)
0

tanh(zz)sinh(zz)sinh(&,7)

2 _
where g°(r) = sinh[( + &,)z] - fsinh(ar)

(5.2)

Here, as usual, & = 7 — ¢; the definitions of the dimensionless parameter £ and the kernel U

are as follows:

Ey,—& &y —1

p=—t—="F (5.3)
Eptén &g tl

U(e,7) = [ DKULTD) Gy (5.4)

o coshz —cosé,

Note that U (z,7) is a symmetric function of its arguments. The procedure for calculation of

K(n,7) and U (z,7) is described in Appendix C.
Next, it is convenient to introduce two new functions, G and V, as follows:
G(r) =¥,(r)/ g(z), V(z,7)=psin&.9(r)g(z)U(z,7) (5.5)

Thus, Eq. (5.1) acquires the form of an integral equation of Fredholm of the second kind [50]:

G(r) = b(z) + Tv (z,7)G(7)d7 (5.6)
0

2%'2(1- p) sinh(az)

where b(z) =
O ="Gne.  sinh(eo)

(7) (5.7)

One could check that the functions b® and V? are integrable over the domain 0 < 7 < .
Moreover, V(z,7) is a symmetric function of its arguments. In such a case, G(z) can be found
as a solution of Eq. (5.6), by iterations [51]. To start the iterations, we substituted G(7) =

b(7) in the right-hand side of Eq. (5.6). This simple iteration procedure converges fast. In our
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computations, to achieve a relative error of 107, the maximum number of iterations was 30
for gn =8.

The calculation of the kernel, V, is much more time consuming than the numerical
solution of the integral equation. The computations can be accelerated in the following way.
The function, U, defined by Eq. (5.4), depends on ¢, but it is independent of &,,. As described
in Appendix C, we calculated U, and stored the dependence of U on «. The stored numerical

data were further used to compute the parameters in the tables in Appendix D for various &p.
5.2. Asymptotics of the electric field far from the particle

As mentioned in section 4.2, far from the particle (r >> r¢), we have x;—0 and 7—0. In

this limit, with the help of Eq. (3.20), one can bring Eq. (3.17) into the form:

dr oy
E,|e0 ~ - X D(a,&p)  (r>>r,) (5.8)
n
where D(a,&,,) = 2%? j M (5.9)
5 Sinh(&;7)

In Eq. (3.17), we have used the fact that K(0,7) = P_12+i{1) = 1. Note that Eqs. (4.5)—(4.6)
represent a special case of Egs. (5.8)-(5.9) for &, = 1. Equation (5.8) expresses the leading
term of a truncated series expansion, the first neglected term being of the order of x,°. For
x1—0, Eq. (5.8) predicts E; « x;® o r™>. In other words, as mentioned above, at long distances
the electric field created by the particle behaves as the field of a dipole. The function D(e, &n)
is proportional to the dipole moment; see Section 6 for details. To calculate D(e, &n), we first
determined W¢(7) as explained in Section 5.1 and Appendix C, and then we computed
numerically the integral in Eq. (5.9). The dependence D(ea,&pn) Is tabulated (see Table 1 in
Appendix D).

Figure 8 shows the calculated plots of D vs. « for five different values of &,. One sees
that D increases by several orders of magnitude with the rise of «. On the other hand, D
decreases with the increase of gn. The physical consequences of this behavior are discussed in

Section 6, where the electrostatic interaction between two adsorbed particles is considered.
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5.3. Determination of the power v in the short-range asymptotics

In the special case gn = 1, the power 1. is expressed by Eq. (4.4). In the general case
&n #= 1, such explicit expression for v is missing. Instead, v can be determined as the smallest

positive root of Eq. (5.17); see below.

We recall that v characterizes the integrable divergence of E,(x;) and pei(x1) for x;—1,
i.e. at the contact line on the particle surface; see Eqgs. (3.22) and (3.24). The contact line
represents the edge-line of the wedge-shaped zone confined between the surfaces Sp, and Spw
near the particle. Analogous problem has been solved in Ref. [28] for a wedge with planar
surfaces. Here, our problem is more complicated, because the surface Sy, is spherical and the

edge-line is curved; therefore, we have to use curvilinear coordinates.
In view of Eq. (3.3), the asymptotic form of Eq. (3.2) for 77— (x;—>1) is:

R alPk,O_i_\Pk,O R

=0 (k=n, 5.10
ot T on T4 oz ( P) (5.10)

Here, Who and Wy are the leading terms in the expansions of ¥, and ¥, for 7—o. In the
same limit, we have set cothn ~ 1. In the frame of the same approximation, the boundary
conditions, Egs. (2.10), (2.11) and (3.13) acquire the form:

Y o=0 at&=0; Wo=0 até=r+¢& (5.11)
oh % ok %
Voo =Y and &, o =&, o at £=4, (5.12)

Equations (5.10)-(5.12) define the boundary problem in the considered close vicinity of the
contact line. The general solution of Eq. (5.10), that satisfies Eq. (5.11), is:

Y, o0 = X, exp[-(0.5+Vv)n]sin(vE) (5.13)
W0 =X, exp[—(0.5+v)plsin[v(z + &, — )] (5.14)

where X, and X, are unknown coefficients. The substitution of Egs. (5.13) and (5.14) into the
boundary conditions, Eg. (5.12) leads to the following homogeneous system of linear

equations for X, and X,:

sin(vE,) X, —sin(v) X, =0

(5.15)
cos(V&) Xy + &py COS(vZ) X, =0

18



This system will have a non-trivial solution, when the determinant of the system is equal to

zero, i.e.;

&pn SIN(VE, ) cos(vr) + cos(vE, ) sin(vzr) = 0 (5.16)

Having in mind that & = 7 — ¢, after some transformations we bring Eq. (5.16) into the form:
sin[(27 —a)v] = Bsin(av) (5.17)

where £ is defined by Eq. (5.3). Equation (5.17) has an infinite series of positive roots v < 1,
<y <.... For -1 < < 1, the smallest root, 14, is always between 0.5 and 1.0; moreover, we
always have 1, > 1. Equation (3.22) indicates that E;|,=o oc (1 — x1)*, and consequently, only
the first root, 11, corresponds to singularity, whereas the other roots, 15, 3,..., do not give
contribution to the singularity of the electric field at the contact line. In the special case &n =1

(#=0), Eq. (5.17) gives v; = v, Where 1, is given by Eq. (4.4).

As we are interested in the leading (singular) term in the expansion of E,|,-o at x;—1,
hereafter we will set v = 1. The dependence v = a,&n), calculated from Eq. (5.17), is
tabulated in Appendix D (Table 4 therein) and illustrated in Fig. 9. As seen in this figure, the
limiting values of vare  a=0) = 0.5 and {a=x) = 1 (See also Table 4 in Appendix D). The
latter value, corresponding to point contact of the particle with the water phase, indicated the

absence of singularity, as independently established in Ref. [21] for this special case.

In general, v increases monotonically with the rise of both o and &, (Fig. 9). Because
Eql=o oc (1 — x1)", the most pronounced singularity takes place at the smallest value of v,
viz., v= 0.5, which corresponds to a particle (immersed in water) that has a point contact with

the nonpolar fluid (oil, air).

5.4. Asymptotics of the electric field near the particle

The limiting form of Eq. (3.22) near the contact line (x;—1) is:

A Y
E,| .m0 = —g—apnca— ) (% —>1) (5.18)
n
where C(a, &) = IimlJ(xl,a,gpn) (5.19)
X =’
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and where v is the smallest positive root of Eq. (5.17). We determined C(¢,&pxn) numerically,
in the framework of the calculation of J(x1,,&n), Which is considered in Section 5.5. For
x1—1, the computed J tends to a constant, which is equal to C, in accordance with Eg. (5.19).
Numerical results for C(«,&n) are tabulated in Appendix D and illustrated in Fig. 10. One sees
that for the smaller &y, the dependence C(«) exhibits a maximum, whereas for the greater &
it is monotonic. For o < 145°, C decreases with the rise of &, while for o < 145° this

tendency is inverted.

To check how important is the asymptotics of E; at x;—1 for the electrodipping force,

we represent Eq. (4.13) in the form:

2 2
, =87 j R j b | Oy (5.20)
47z0' o 47z0' o X

1

To obtain Eq. (5.20), we first substituted | from Eqg. (3.17) into Eq. (4.13), and then replaced
coshn — 1 from Eq. (3.20); ¢'is a small parameter. The second integral in the right-hand side
of Eqg. (5.20) can be estimated by substituting E,|,=o from Eq. (5.18):

2v-1
87 j d—X; _c?f (5.21)
47r0 o X 2v-1

For v—0.5, the right-hand side of Eq. (5.21) could become large. For example, for 6 = 0.001

and 2v—1 = 0.01, we have 52 %/(2v - 1) = 93.33. This fact could lead to inaccuracies when
fso IS calculated by numerical integration with a finite step. For this reason, at the smaller «,
the values of the force coefficient f(«a,&n) determined from Table 4 in Ref. [8] could differ in
the frame of £15% from the exact values of this quantity calculated here on the basis of the

exact analytical asymptotics (see the table for fz in Appendix D).

In fact, v—0.5 for a—0 (see Fig. 9), which corresponds to a particle situated in water
and having only a point contact with the nonpolar phase. In this limit, f,, has a logarithmic
singularity (Appendix A), but the physical force coefficient, fx = f,»Sin’e, tends to zero

because of the multiplier sin’c; see Eq. (4.15) and Fig. 11.
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5.5. Calculation of fr and J in the general case when g, =1

To calculate fr(er,&n) and J(X1, @, &n) in the general case gy, = 1, we first solved Eq. (5.6)
and determined Ws(z), as explained in Section 5.1 and Appendix C. Then, ¥¢(z) was
substituted in Eq. (3.17) to determine I. Next, |1 was substituted in Egs. (3.23) and (4.13) to

calculate J and f,,. Finally, we used the relationship fr = fsin’c.

The calculated fr(e, &n) is tabulated in Appendix D and illustrated in Fig. 11. As seen in
the figure, fr is monotonically increasing with the rise of «. This behavior is related to the fact
that the area of the interface particle—nonpolar fluid (and the total surface charge) is larger for
greater angle «. In particular, for o = 0 this area is zero and fr = 0. The dependence of fz on
&n 1S more complicated. For o < 120°, fr grows with the rise of &, but for greater « this
tendency is inverted (Fig. 11). fz has no singular points in the whole interval 0 < « < 180°. For
example, for n = 8, fr(180°) = 11.10 (not shown in Fig. 11). For o = 180° it is preferable to
use the theoretical expressions in Ref. [21], to avoid computational problems related to
singularity in the coordinate transformation in Section 2.2. The values of fr(, &), tabulated
in Appendix D, can be used for calculation of the electrodipping force, F™, with the help of
Eq. (4.15). If F™ is experimentally measured, the tabulated numerical data for fr(e, &) enable

one to determine the surface charge density, opn; see Ref. [8] for details.

Figures 12a and 12b show calculated curves J(x;) for several values of « and two values
of &n. We recall that we need to know J(x1, e, &n) for calculating the electric field E;|,=0 and
the electric pressure, pe(r), by means of Egs. (3.22) and (3.24). As expected, J(x1) Is a
function of bounded variation, which is almost constant for « about 90°. The strongest
dependence of J on x; is observed for the more hydrophobic particles, see the curve with « =
150° in Fig. 12. On the other hand, J exhibits a pronounced dependence on «: J could rise by
two orders of magnitude when « increases from 30° to 150°. The comparison between Figs.
12a and 12b indicates that the increase of &, produces some effect on J, but this effect is

much weaker than the influence of .

As in Fig. 5, the continuous lines in Fig. 12 are obtained by using the equations derived
in the present paper, whereas the points denoted by circles are calculated independently, by
means of the procedure for solution of partial differential equations described in section 5.2 of
Ref. [8]. It should be noted that the density of the integration grid used in Ref. [8] is greater
than the density of the points (the circles) shown in Figs. 5 and 12. (We had to decrease the
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density of the circles shown in the figures to make the continuous line visible.) In both Figs. 5
and 12, the agreement between the two independent solutions is excellent and confirms the

accuracy of the two different computational procedures.

6. Asymptotic expression for the lateral electric force between two particles

Here, we consider two particles which are attached to the boundary water—nonpolar
fluid, and which are separated at a center-to-center distance L (Fig. 13). In accordance with
Eq. (5.8), for r >> r the electric field generated by each particle in isolation is identical to the
electric field of a dipole, whose dipole moment is perpendicular to the interface water—

nonpolar fluid:

Exlio =0 Ejlox——  (r>>) 6.1)

where the effective dipole moment is:
Py =4710'pnrc3D =47zaan3Dsin3a (6.2)

D = D(a,&m) is defined by Eq. (5.9); it is tabulated in Appendix D, and illustrated in Fig. 8.

The force of electrostatic interaction between two such particles-dipoles (Fig. 13) is:

Fz :% (RIL<<1) (63)
Here, pq4: and pg, are the dipole moments defined by Eq. (6.2), but in general, they could
correspond to different particle radii, Ry and Ry; dielectric constants, & and &y; contact
angles, a1 and ap, and surface charge densities, opn1 and opn2. The factor 2 in the denominator
of Eq. (6.3) accounts for the fact that the dipolar field occupies only the upper half-space (the
nonpolar fluid), see Fig. 13. Indeed, as mentioned above, the electric field, created by charges
in the nonpolar phases, practically does not penetrate into the water phase due to its greater
dielectric constant. The presence of dissolved electrolyte in the aqueous phase additionally

suppresses the penetration of electric fields from the oil into the water [21].

As indicated by Eq. (6.2), the dipole moment pq is proportional to Dsin’a. In Fig. 14 we
have plotted Dsin*c vs. « for various values of g, One sees that py oc Dsin’ar increases

monotonically with the rise of ¢, but decreases when &, increases. In particular, the
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divergence of D for a—180° (Fig. 8) is compensated by the fact that sin*a—0 in the same

limit, so that pq is finite for all « € [0, 180°].

In general, the increase of py o« Dsin®« with the rise of « (Fig. 14) correlates with the
experimental fact that the repulsion between adsorbed particles increases when the particles
are more hydrophobic; see Ref. [6]. In the latter study, for « > 129° the repulsion between the
particles was so strong that they formed hexagonal lattices whose constant was considerably
greater than the particle diameter. On the other hand, for « < 115° the repulsion weakened,

and the particles coagulated and formed surface aggregates [6].

In general, the interaction described by Eq. (6.3) is repulsion when opn1 and opn2 have
similar signs and attraction if opn1 and opn2 have the opposite signs. The respective interaction

energy is:

Uy = [Fo(Dydl = PP g/ <oy (6.4)

L 2 nL
As mentioned above, the Coulombic interaction of adsorbed particles across the oily phase
was experimentally established in Ref. [1] and estimated by means of the following formula
[1,6,12]:

2
Up, :M{l—[l+(3+c03a)2R2/Lz]‘l/z} (6.5)

In Eq. (6.5) the case of two identical particles is considered; Apn = 27R?(1 - cosa) is the area

of the interface particle-nonpolar fluid. The asymptotics of Eq. (6.5) for R%/L? << 1 reads:

~ [Ay0mR(3+cosa)]?

for R2/1% <<1 6.6
26, (60)

U12

The comparison of Egs. (6.6) and (6.4) shows that the effective dipole moment in Eq. (6.6) is
pa* = ApnopnR(3 + cosa)®. The ratio of the exact dipole moment py in Eq. (6.2) and the

estimated dipole moment, pg*, is:

oF 2D(a,gpn)sin3a
p; (1—cosa)(3+cosa)

(6.7)
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In Fig. 15 we have plotted py /pg™ vs. « for various &:n. One sees that pq /pg™ is close to 1 for
the greater « and smaller &:. In all other cases, one should use the exact Eq. (6.2), which

accounts for the effect of g, on po.

7. Limits of applicability of the developed theory

The theory developed in the present paper is sufficient for quantitative description of the

electrodipping force, F®, when the following two relations are satisfied:

FE) = gW 4 M) o M (7.2)
F(n) ~4_ﬂ-o-2 r2f (06 & ) (7 2)
~ pn'c oo \¥*1€pn ’

n

see Egs. (1.1) and (4.15). Equation (7.1) means that the contribution of surface charges at the
particle-water interface is much smaller than the contribution of charges at the boundary
particle-nonpolar fluid, i.e. F") << F®. Experimental indication for the fulfillment of Eq.
(7.1) is the independence of the particle configuration on the variation of electrolyte
concentration in the aqueous phase. This was observed with particles of radius R = 200-300
um in Ref. [8], but it was also detected with much smaller particles, R =1 um, in Ref. [6]. On
the other hand, indication about a possible effect of F* was found in [3], where the order—
disorder transition in particle monolayers was sensitive to the concentration of salt in the
water. In general, one could expect that the effect of F* should become significant for
relatively small particles, for which the particle radius is comparable to the thickness of the

adjacent electric double layer in the water.
Equation (7.2) is an approximated version of Eq. (5.14) in Ref. [8], which reads:

4
FO - 8—ﬂrczo'2 oo + 20,000 (AP) F oo + j—;(w)z f o (7.3)

pn 'co
n

where Ag is the difference between the electric potentials at the boundaries particle-water and
nonpolar fluid—water; the dimensionless functions f,,, f,-and f,, depend on o and &, and all
of them are of the order of 1. (Note that Eq. (2.2) is equivalent to setting A@ = 0.) For typical
parameter values, rc = 200 um; & = 2; opn = 80 uC/m? (2000 nm? per charge), and Ap = 60
mV, the magnitude of the terms in Eq. (7.3) is [8]:

FO =[145f,, +1.92x107*f , +6.37x107° f ,]x10°N (7.4)
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One sees that for rc = 200 um the terms with f,, and f,, are completely negligible and Eq.
(7.3) reduces to Eq. (7.2). However, for r. = 20 nm the three terms in Eq. (7.4) become
comparable. In such a case, one should calculate also the force coefficients f,, and f,,
defined in Ref. [8].

In summary, when the particles are large enough, then Egs. (7.1) and (7.2) are satisfied
and the theory developed in the present article is sufficient for a quantitative theoretical
description of the electrodipping force, F® ~ F™. In contrast, for smaller particles the
deviations from Eqgs. (7.1) and (7.2) could become significant, and then one should calculate
also F™, f,, and f,,, to achieve an accurate quantitative description. Note that the formalism,

developed here for calculation of f., is directly applicable for the calculation of f,, and f,,.

8. Summary and conclusions

Our purpose here is to solve the theoretical problem about the electric field of a charged
dielectric particle, which is adsorbed at the boundary water—nonpolar fluid (oil, air), see Figs.
1 and 2. In accordance with the experimental findings [2,6,8,11-13], we consider the case
when the surface charges are located at the boundary particle-nonpolar fluid. The symmetry
of the system suggests the Mehler-Fock integral transform to be used for solving the
electrostatic boundary problem (Section 3). In the special case when the dielectric constants
of the particle and the nonpolar fluid are equal, the solution is obtained in a closed analytical
form (Section 4). In the general case of different dielectric constants, the problem is reduced
to the solution of a Fredholm integral equation, Eq. (5.6), which can be carried out
numerically, by iterations (Section 5.1 and Appendix C). The latter numerical procedure turns
out to be much faster than the procedure for direct numerical integration of the original partial

differential equations, which has been previously used [8].

In addition, the derived equations enabled us to obtain analytical expressions for the
asymptotic behavior of the electric field near the particle and far from it. The long-range
asymptotics indicates that two similar particles repel each other as dipoles, whose dipole
moments are expressed through the particle radius, contact angle, dielectric constant and
surface charge density (Section 6). On the other hand, the analytical expression for the short-
range asymptotics is important, because the electric field has an integrable divergence at the

particle contact line that is described by the functions C(a,&n) and U a,&n), see Eq. (5.18).
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The knowledge of the short-range asymptotics ensures accurate calculation of the

electrodipping-force coefficient, fr(c, &m).

For a fast and convenient application of the results obtained in the present paper, the
reader could use the dependencies D(«,&n), C(a.gm), fr(a&n), and U« &n), tabulated in
Appendix D, instead of repeating the calculations described in Section 5.1 and Appendix C.
Thus, D(e,&n), Cla,gm), and a,&n) can be applied for calculation of the meniscus shape
around an adsorbed particle, see Ref. [52]; fr(e,&m) can be used for computing the
electrodipping force, and for determining the surface charge density, opn; see EQ. (4.15).
D(a,&n) is necessary for calculation of the electrostatic interaction between two adsorbed
particles at long distances, in accordance with Egs. (6.2)—(6.4). After a theoretical upgrade,

the results could be also applied for prediction of the electric-field-induced capillary attraction

3]
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Appendix A. Analytical solution to the problem for << 1

The considered electrostatic problem has a closed analytical solution for o << 1.
Physically, this is the case of hydrophilic particle, whose contact angle is close to zero, see

Fig. 2. In this case, our boundary problem, Egs. (2.1)—(2.3), reduces to:

10,09, ¢ -

r + =0 inQ, (k=n, Al
rar( ar) 017° o P) A
P =0, =0 (z=0;r>r,) (A.2)

op 0
¢n:¢p1 gpa_zp—gn a¢zn:4ﬂ-o-p“ (ZZO,OSI’<I‘C) (A3)

The solution of Eq. (A.1), which is finite at infinity, and which is continuous at the plane z =

0, can be expressed in terms of Hankel transform [36,37,53]:
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j T X (s)exp(—sz)J,(sr)ds

i (A.4)
j £X(s) exp(sz)J,(sr)ds
where Jo is the Bessel function of zero order, and X(s) is the Hankel image of the electric
potential. The substitution of Eq. (A.4) into the boundary conditions, Egs. (A.2)—(A.3), leads

to the following integral equations:

jsX(s)JO(sr)ds =% atosr<r,

) (A.5)
J'X(s)Jo(sr)ds:O atr>r,

0

The exact solution of Eqg. (A.5) is reported in Ref. [53]; its application to our specific case

yields:

e
X (s) =( j r¥/23y,(sr)dr (A.6)
0
Using the fast that Ju(X) = [2/(2x)]*%sinx, see e.g. Refs. [29,40], we take the integral in Eq.
(A.6):

X(s) = %[sin(src) —(sr,)cos(sr,)] (A7)
T

With the help of Egs. (A.4) and (A.7), we express the electric field, E;|,=0 = 0¢n/0Z|,=0

8
on J'(%—coss)J (sr/r,)ds (A.8)

Ez|z:0 =
En 6y

The integral in Eq. (A.8) can be taken exactly [41]:

8o X
El ,=——"™2 L _arcsin(x A9
Z|Z—0 gn +8p [(1—X12)1/2 ( l)] ( )

where, as usual, x; = r¢/r. At large distances from the particle, x; << 1, we have

3 5

X X; 3x1
—= ———arcsin(x,) =—+ A.10
(1—x2)"? () 310 (A.10)

Then, the comparison of Egs. (A.9) and (5.8) yields an expression for D|y=o:
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In the opposite limit, x; — 1, close to the contact line we have:

X . 1 Vs
—————arcsin(X,)) =—————+ Al12
(1_ X12)1/2 ( 1) 21/2(1_ X1)1/2 2 ( )
Then, the comparison of Egs. (A.9) and (5.18) yields an expression for C|q=o :
21/2
C@O,¢&y)=—— A.13
(0,pn) 0+ o) (A.13)

where at the last step we have used the fact that v|,-o = 0.5; see Fig. 9. Equations (A.11) and
(A.13) give the values of the parameters D and C for small contact angles; see also Figs. 8 and
10, and Tables 1 and 2 in Appendix D. In addition, because f, is proportional to integral over
E|:=0, see Eq. (5.20), equation (A.9) shows that f,, has logarithmic singularity at a—0.
Finally, comparing Egs. (A.9) and (3.22), we obtain:

rl+Ep)x (L= x7)Y?

J(%1,0,6p) = —arcsin(x,)] (A.14)

Appendix B. Calculation of the integral in Eq. (4.2)

To transform the integral in Eq. (4.2), we substitute K(#,7) from Egs. (3.7) and (3.9):

o0

Y 172 ,[Sinh[(ﬂ_f")r]sin(fy)rdr (B.1)

zsina ;[ (cosh y —cosh7)*'? 3 sinh[(7 + &, )7]

Ie(ﬂ’a):

The last integral in Eq. (B.1) is of Fourier type and it can be taken exactly:

0 - _ 2 - .
J‘S!nh[(” é:c)r] sm(ry) rdr = Ve Sln(2Ve§C)S|nh(Ve y) . (BZ)
o Sinh[(z +&.)7] 2[cosh(v,y) —cos(2v,<&, )]
where 1, is defined by Eq. (4.4). Substituting Eq. (B.2) into Eq. (B.1), we obtain:
. o _ -1/2 ;
I, - 2v, sin(2v &,) J (cosh'y —cosh 7)™~ “sinh(v,y) q (B.3)

[COSh(Ve y) - COS(ZVegZC )]2

Finally, in Eqg. (B.3) we introduce a new integration variable, y = 2x + 7, and after some

C (r+&)sina )
transformations we derive Eq. (4.3).
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Appendix C. Procedure for fast calculation of the kernels K and U

For a fast computation of the kernel K(7,7), defined by Eqg. (3.9), we have been using
two alternative expressions, depending on whether 7 is small or large. For small values of 7,

it is convenient to use Eq. (8.11.1) in Ref. [40]:
1
K(n.7) = Fo (5, biL y) exp(-b7) (C.1)

where b=05+i7, y=1-exp(-2n) (C.2)

and F,1(a,b;c;y) is the hypergeometric function. On the other hand, for large, values of 7, it is

more convenient to use Eq. (15.3.6) in Ref. [40]:

ol ity TR

(C.3)

where I" is the gamma function; b and y are given by Eqg. (C.2), and the other parameters are:
b=05-ir, c=1+ir, C=1-ir (C.4)

In our computations, we used FORTRAN with IMSL, where the T" function of complex
argument is a built-in function. To calculate F,1(a,b;c;y), we applied numerical summation of
the standard hypergeometric series of Gauss [40]. For the process of computations, it is

convenient to introduce the quantity:

7, = 0.1371+0.202exp(0.03127) (C.5)

To minimize the number of terms summed when calculating the hypergeometric series, we
used the following criterion: For 0 < n < my, K(7,7) is calculated by means of Eg. (C.1),
whereas 7 > np,, K(7,7) is calculated by means of Eq. (C.3). Alternatively, one could use the

software “Mathematica 5.0, where F,1(a,b;c;y) is a built-in function.

To compute the function U(z,7), we carried out the integration in Eq. (5.4)
numerically, by using the Simpson rule. Equation (C.3) shows that the function
K(n,7)K(n,7) decays as exp(—7) at large 7, and therefore the integral in Eqg. (5.4) converges

very well.
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Appendix D. Tabulated values of the computed basic functions

For a fast and convenient application of the results obtained in the present paper, the

reader could use the dependencies D(e,&n), C(a,&m), fr(@,&mn), and a,&n), tabulated here,

instead of repeating the calculations described in Section 5.1 and Appendix C.

Table 1. Function D(e, &n) defined by Eq. (5.9)

o Emn = &l &n
0125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00
0 [0.1886 0.1698 0.1415 0.1213 0.1061 0.08488 0.07074 0.04244 0.02358
5 10.1941 0.1755 0.1472 0.1268 0.1114 0.08957 0.07490 0.04525 0.02526
10 | 0.2006 0.1822 0.1539 0.1332 0.1174 0.09490 0.07964 0.04846 0.02718
15 1 0.2083 0.1900 0.1615 0.1405 0.1243 0.1010 0.08505 0.05214 0.02939
20 | 0.2173 0.1990 0.1702 0.1488 0.1321 0.1079 0.09123 0.05636 0.03194
25 | 0.2277 0.2093 0.1803 0.1583 0.1411 0.1159 0.09831 0.06122 0.03489
30 [0.2398 0.2213 0.1917 0.1692 0.1513 0.1250 0.1065 0.06682 0.03831
35 | 0.2538 0.2351 0.2049 0.1817 0.1631 0.1355 0.1158 0.07333 0.04229
40 |0.2700 0.2511 0.2202 0.1960 0.1767 0.1476 0.1267 0.08090 0.04696
45 |0.2888 0.2695 0.2378 0.2127 0.1924 0.1616 0.1393 0.08976 0.05246
50 |0.3107 0.2910 0.2582 0.2320 0.2107 0.1780 0.1541 0.1002 0.05897
55 | 0.3363 0.3160 0.2820 0.2546 0.2320 0.1971 0.1714 0.1125 0.06673
60 |0.3664 0.3454 0.3099 0.2811 0.2571 0.2197 0.1918 0.1272 0.07604
65 | 0.4018 0.3800 0.3428 0.3123 0.2868 0.2465 0.2162 0.1449 0.08730
70 | 0.4438 0.4211 0.3819 0.3494 0.3221 0.2785 0.2453 0.1662 0.1010
75 | 0.4941 0.4701 0.4286 0.3939 0.3644 0.3170 0.2805 0.1921 0.1179
80 |0.5546 0.5292 0.4850 0.4477 0.4157 0.3638 0.3234 0.2241 0.1388
85 |0.6281 0.6011 0.5537 0.5132 0.4783 0.4211 0.3761 0.2637 0.1651
90 |0.7184 0.6894 0.6381 0.5939 05556 0.4921 0.4417 0.3135 0.1985
95 [0.8306 0.7992 0.7432 0.6946 0.6521 0.5811 0.5241 0.3768 0.2413
100 | 0.9718 0.9374 0.8757 0.8217 0.7742 0.6941 0.6292 0.4583 0.2973
105 | 1.152 1114 1.045 0.9848 0.9311 0.8398 0.7651 0.5649 0.3713
110 | 1.386 1.344 1266 1197 1136 1.031 09438 0.7067 0.4712
115 | 1.696 1.648 1559 1480 1409 1.286 1.183  0.8990 0.6086
120 | 2.116 2.060 1.956 1.864 1.780  1.635 1.512 1.166  0.8020
125 | 2700 2.633 2510 2400 2299 2.123 1974 1545  1.082
130 | 3.536 3455 3305 3.170 3.047 2.830 2644 2102  1.499
135 | 4781 4679 4491 4320 4165 3.889 3.652 2950  2.145
140 | 6.720 6.587 6.341 6.117 5913 5551 5237 4298  3.192
145 9916 9.733 9395 9.083 8.808  8.309 7875 6566  4.986
150 | 1559 1532 1483 1438 13.96 13.23 1260  10.67  8.294
155 | 26.71 26.28 2548 2476 2410 22.94 21.93 1885  15.01
160 | 51.81 51.02 49.56 48.25 47.05 44.93 43.11 37.58 30.67
165 | 122.2 1204 1171 1142 1115  106.8 102.8 90.72 75.84
170 | 410.7 4049 3943 3848 3762 361.2 3484 3107 2654
175 | 3274 3228 3145 3071 3005 2889 2790 2505 2175

30



Table 2. Function C(a,&n) defined by Eq. (5.19)

&n = &lé&n
0125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00

0 |0.4001 0.3601 0.3001 0.2572 0.2251 0.1801 0.1501 0.09003 0.05002

5 |04170 0.3740 0.3101 0.2648 0.2328 0.1843 0.1532 0.09152 0.05070
10 | 0.4401 0.3930 0.3238 0.2755 0.2413 0.1904 0.1580 0.09400 0.05195
15 | 0.4669 0.4145 0.3391 0.2872 0.2507 0.1972 0.1633 0.09680 0.05340
20 | 0.4977 0.4390 0.3561 0.3001 0.2610 0.2047 0.1691 0.09996 0.05507
25 | 0.5334 0.4667 0.3749 0.3143 0.2723 0.2129 0.1756 0.1035 0.05698
30 | 0.5747 0.4980 0.3958 0.3299 0.2847 0.2219 0.1827 0.1075 0.05916
35 | 0.6224 0.5333 0.4187 0.3469 0.2982 0.2318 0.1905 0.1120 0.06166
40 | 0.6777 0.5732 0.4441 0.3655 0.3130 0.2426 0.1992 0.1171 0.06451
45 | 0.7417 0.6181 0.4719 0.3859 0.3292 0.2546 0.2088 0.1227 0.06777
50 | 0.8159 0.6683 0.5023 0.4081 0.3469 0.2677 0.2195 0.1292 0.07150
55 | 0.9017 0.7244 0.5355 0.4322 0.3662 0.2822 0.2313 0.1364 0.07577
60 | 1.000 0.7864 0.5715 0.4585 0.3873 0.2981 0.2445 0.1447 0.08067
65 | 1.113 0.8543 0.6105 0.4870 0.4104 0.3158 0.2592 0.1540 0.08632
70 | 1.238 0.9275 0.6522 0.5178 0.4357 0.3354 0.2756 0.1647 0.09285
75 | 1.374 1.005 0.6966 0.5511 0.4632 0.3571 0.2941 0.1770  0.1004
80 | 1515 1.084 0.7434 0.5869 0.4934 0.3813 0.3148 0.1910 0.1093
85 | 1.650 1.162 0.7920 0.6254 0.5263 0.4083 0.3383 0.2073  0.1197
90 | 1.763 1.236 0.8420 0.6664 0.5623 0.4385 0.3649 0.2262  0.1320
95 | 1.840 1.300 0.8925 0.7101 0.6017 0.4724 0.3952 0.2482  0.1467
100 | 1.870 1.350 0.9427 0.7565 0.6447 0.5105 0.4298 0.2742  0.1643
105 | 1.851 1.384 0.9915 0.8053 0.6916 0.5537 0.4696 0.3050  0.1857
110 | 1.793 1400 1.038 0.8564 0.7429 0.6025 0.5156 0.3418 0.2119
115 | 1.710 1401 1.082 0.9098 0.7987 0.6580 0.5689 0.3862  0.2445
120 | 1.617 1389 1.118 0.9562 0.8596 0.7213 0.6313 0.4403  0.2854
125 | 1.523 1366 1.158 1.018 0.9257 0.7938 0.7046 0.5071  0.3378
130 | 1.440 1345 1191 1.081 0.9975 0.8771 0.7915 0.5906  0.4060
135 | 1.364 1316 1220 1143 1.075 09726 0.8948 0.6964  0.4968
140 | 1.298 1285 1246 1205 1159 1.084 1.019 0.8332 0.6205
145 | 1.242 1255 1268 1.267 1249 1210 1.168 1.013 0.7941
150 | 1.199 1234 1289 1329 1345 1355 1.349 1.255 1.047
155 | 1.163 1.219 1313 1391 1446 1530 1.575 1.591 1.433
160 | 1.136 1.204 1.334 1454 1553 1711 1.836 2.065 2.053
165 | 1.116 1.197 1.357 1516 1.664 1936 2.167 2.767 3.134
170 | 1.102 1.193 1384 1578 1777 2176 2.554 3.813 5.206
175 | 1.099 1.190 1413 1.640 1.890 2.412 2.967 5.322 8.384
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Table 3. Function fr(a,&n) = f,csin“a, defined by Eq. (4.13)

o En = &l &

0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00
0 |00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 10.1482 0.1342 0.1129 0.09740 0.08565 0.06901 0.05778 0.03500 0.01957
10 | 0.2878 0.2622 0.2225 0.1933 0.1708 0.1386 0.1166 0.07132 0.04014
15 | 0.4196 0.3843 0.3291 0.2877 0.2555 0.2088 0.1765 0.1091 0.06183
20 | 0.5440 0.5011 0.4327 0.3807 0.3399 0.2798 0.2377 0.1484 0.08475
25 | 0.6618 0.6128 0.5337 0.4726 0.4239 0.3516 0.3002 0.1895 0.1090
30 | 0.7734 0.7198 0.6321 05632 0.5078 0.4243 0.3643 0.2325 0.1349
35 [0.8792 0.8224 0.7280 0.6528 0.5916 0.4980 0.4299 0.2777 0.1625
40 | 09797 0.9209 0.8217 0.7415 0.6754 05730 0.4974 0.3253 0.1921
45| 1.075 1.016 0.9133 0.8294 0.7593 0.6493 0.5669 0.3756 0.2240
50 | 1.166 1.106 1.003 09165 0.8435 0.7271 0.6386 0.4289 0.2585
55| 1.253 1194 1.091 1.003 0.9280 0.8066 0.7128 0.4856 0.2960
60 | 1.335 1278 1177 1.089  1.013 0.8879 0.7897 0.5462 0.3370
65| 1414 1360 1261 1175 1.099 09713 0.8696 0.6111 0.3821
70 | 1489 1438 1344 1260 1185 1057 0.9529 0.6809 0.4318
75 | 1561 1514 1.426 1.345 1.272 1.145 1.040 0.7563 0.4869
80 | 1.630 1587 1506 1430 1360 1.236  1.131 0.8380 0.5485
85| 1695 1658 1585 1515 1449 1330 1226 0.9269 0.6177
90 | 1.758 1.727 1663 1.600 1540 1427 1326 1.024 0.6958
95| 1818 1793 1740 1685 1631 1527 1431 1130 0.7847
100| 1.875 1857 1815 1770 1724 1631 1542 1248 0.8864
105 1.930 1918 1890 1856 1818 1.739 1660 1377  1.004
110 1.982 1978 1963 1941 1914 1852 1784 1521  1.140
115| 2.031 2035 2035 2.026 2011 1968 1915 1681  1.299
120 | 2.078 2.091 2106 2112 2110 2.090 2054 1859  1.488
125| 2123 2144 2176 2197 2210 2216 2202 2060 1.712
130 | 2.165 2194 2244 2282 2311 2346 2359 2285  1.980
135| 2204 2242 2310 2367 2413 2482 2524 2540  2.306
140 | 2.240 2.288 2375 2450 2516 2622 2700 2828  2.705
145| 2273 2330 2436 2532 2618 2766 2884 3153  3.198
150 | 2.303 2369 2495 2611 2719 2912 3076 3521 3811
155| 2.329 2405 2550 2.687 2818 3.059 3277 3935 4580
160 | 2.352 2436 2599 2758 2911  3.204 3477 4394 5548
165| 2.371 2462 2642 2821 2996 3341 3675 4893  6.763
170 | 2.385 2482 2677 2873 3.069 3462 385 5410  8.252
175 2,393 2494 2697 2902 3110 3532 3963 5890 9.941
180 | 2.397 2500 2.710 2923 3142 3592 4062 6.130 11.10
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Table 4. Function W «,&pn) defined as the smallest positive root of Eq. (5.17)

0.125

0.250

0.500

0.750

En = &l &
1.00

1.50

2.00

4.00

8.00

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180

0.5000
0.5127
0.5260
0.5400
0.5547
0.5703
0.5867
0.6040
0.6222
0.6414
0.6617
0.6830
0.7052
0.7285
0.7524
0.7769
0.8015
0.8256
0.8485
0.8697
0.8886
0.9050
0.9190
0.9308
0.9407
0.9491
0.9564
0.9627
0.9682
0.9732
0.9777
0.9818
0.9858
0.9895
0.9930
0.9965
1.000

0.5000
0.5114
0.5232
0.5357
0.5487
0.5623
0.5766
0.5915
0.6071
0.6235
0.6405
0.6582
0.6766
0.6956
0.7151
0.7351
0.7552
0.7753
0.7952
0.8145
0.8330
0.8505
0.8667
0.8817
0.8955
0.9080
0.9194
0.9299
0.9395
0.9484
0.9567
0.9645
0.9720
0.9792
0.9862
0.9931
1.000

0.5000
0.5094
0.5192
0.5294
0.5399
0.5509
0.5623
0.5741
0.5863
0.5990
0.6122
0.6258
0.6398
0.6543
0.6692
0.6845
0.7002
0.7161
0.7323
0.7486
0.7650
0.7815
0.7978
0.8140
0.8300
0.8456
0.8609
0.8759
0.8905
0.9048
0.9187
0.9325
0.9460
0.9594
0.9728
0.9863
1.000

0.5000
0.5081
0.5164
0.5250
0.5339
0.5430
0.5525
0.5623
0.5725
0.5829
0.5937
0.6049
0.6164
0.6283
0.6406
0.6533
0.6663
0.6798
0.6936
0.7078
0.7224
0.7373
0.7526
0.7682
0.7841
0.8004
0.8169
0.8337
0.8508
0.8681
0.8858
0.9037
0.9220
0.9407
0.9598
0.9796
1.000

0.5000
0.5070
0.5143
0.5217
0.5294
0.5373
0.5455
0.5538
0.5625
0.5714
0.5806
0.5902
0.6000
0.6102
0.6207
0.6316
0.6429
0.6545
0.6667
0.6792
0.6923
0.7059
0.7200
0.7347
0.7500
0.7660
0.7826
0.8000
0.8182
0.8372
0.8571
0.8780
0.9000
0.9231
0.9474
0.9730
1.000

0.5000
0.5056
0.5114
0.5173
0.5233
0.5295
0.5358
0.5424
0.5491
0.5560
0.5632
0.5706
0.5782
0.5861
0.5944
0.6029
0.6119
0.6212
0.6310
0.6413
0.6521
0.6635
0.6756
0.6885
0.7022
0.7169
0.7327
0.7497
0.7682
0.7884
0.8104
0.8347
0.8614
0.8910
0.9238
0.9601
1.000

0.5000
0.5047
0.5094
0.5143
0.5193
0.5244
0.5296
0.5349
0.5405
0.5461
0.5520
0.5580
0.5643
0.5708
0.5776
0.5847
0.5922
0.6000
0.6082
0.6169
0.6261
0.6359
0.6465
0.6578
0.6700
0.6834
0.6980
0.7140
0.7318
0.7518
0.7742
0.7998
0.8290
0.8629
0.9021
0.9477
1.000

0.5000
0.5028
0.5056
0.5085
0.5114
0.5144
0.5175
0.5206
0.5238
0.5271
0.5305
0.5340
0.5377
0.5416
0.5456
0.5498
0.5543
0.5590
0.5641
0.5695
0.5753
0.5817
0.5885
0.5961
0.6045
0.6139
0.6245
0.6366
0.6506
0.6671
0.6868
0.7109
0.7410
0.7798
0.8316
0.9027
1.000

0.5000
0.5015
0.5031
0.5047
0.5063
0.5079
0.5096
0.5113
0.5131
0.5149
0.5167
0.5187
0.5207
0.5228
0.5250
0.5274
0.5299
0.5326
0.5354
0.5385
0.5419
0.5456
0.5497
0.5542
0.5593
0.5651
0.5718
0.5796
0.5889
0.6002
0.6142
0.6323
0.6566
0.6909
0.7432
0.8322
1.000
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Figure Captions

Fig. 1. Sketch of a particle at the interface between water and nonpolar fluid (oil, air). yis the
interfacial tension; R and r are the radii of the particle and the three-phase contact line; « and
@ are the central and contact angle; y« is the meniscus slope angle at the contact line; F is a
normal force acting on the particle, which can be of electric and/or gravitational origin.

Fig. 2. In zero-order approximation, the interface water—nonpolar fluid, Sny, is planar. Sp, and
Spw denote the interfaces particle-nonpolar fluid and particle-water, respectively.

Fig. 3. Introduction of toroidal coordinates (& 7). The position of the contact line coincides
with the pole, As; the interfaces Spw, Spn, and Sy correspond to the coordinate surfaces &= 0,
&= &, and &=+ &, respectively, where & = 7 —a (see Fig. 2).

Fig. 4. Plot of D¢ and C. vs. « calculated by means of Egs. (4.6) and (4.12); &n = 1.

Fig. 5. Plots of J. vs. x; for different values of « denoted in the figure. The continuous lines
are calculated from Egs. (4.3) and Eq. (4.14). The circles are computed independently, by
numerical solution of the original system partial differential equations; see Section 5.2 in Ref.

[8].
Fig. 6. Plots of J. vs. x; for smaller values of « denoted in the figure (cf. Fig. 4). The curves

for « = 5° and 10° are calculated from Egs. (4.3) and Eq. (4.14). The curve for ¢ = 0 is
computed by means of Eq. (A.14) in Appendix A.

Fig. 7. Dependence of the force coefficients f,, and fr = f,»sin“c on a for g, = 1. The curves
are calculated with the help of Egs. (4.3) and (4.13).

Fig. 8. Dependence of D on « for various &, denoted in the figure. The curves are calculated
with the help of Eq. (5.9).

Fig. 9. Dependence of v on « for various &, denoted in the figure; v is calculated as the
smallest positive root of Eq. (5.17).

Fig. 10. Dependence of C on « for various &, denoted in the figure. The curves are calculated
as explained in the text.

Fig. 11. Dependence of the force coefficient fz on « for various &, denoted in the figure. The
curves are calculated as explained in Section 5.5.

Fig. 12. Plots of J vs. x; for different values of « denoted in the figure. () &n = 0.5.
(b) sn = 2. The continuous lines are calculated as explained in Section 5.5. The circles are
computed independently, by numerical solution of the original system partial differential
equations; see Section 5.2 in Ref. [8].

Fig. 13. Two particles attached to the boundary water—nonpolar fluid, which are separated at a
center-to-center distance L. For L >> r., the electric field of each particle in isolation is
identical to the electric field of a dipole, whose dipole moment is given by Eq. (6.2).

Fig. 14. Plot of Dsin*a vs. « for various &n denoted in the figure. The dipole moment py o«
Dsin®« increases monotonically with the rise of «; see Eq. (6.2). The values of D are the same
as in Fig. 8.

Fig. 15. Plot of py/ps* vs. « for various &n. The curves are calculated by means of Eq. (6.7)
where D is the same as in Fig. 8.
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water phase

Fig. 1. Sketch of a particle at the interface between water and nonpolar fluid (oil, air). yis the
interfacial tension; R and r are the radii of the particle and the three-phase contact line; « and
6 are the central and contact angle; y is the meniscus slope angle at the contact line; F is a
normal force acting on the particle, which can be of electric and/or gravitational origin.

nonpolar
fluid

-~
Ny

Fig. 2. In zero-order approximation, the interface water—nonpolar fluid, Sy, is planar. Sp, and
Spw denote the interfaces particle—nonpolar fluid and particle-water, respectively.
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A

Fig. 3. Introduction of toroidal coordinates (& 7). The position of the contact line coincides
with the pole, As; the interfaces Spw, Spn, and Sy correspond to the coordinate surfaces &= 0,
E= &, and &= 7+ &, respectively, where & = 7—a (see Fig. 2).
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Fig. 4. Plot of De and C. vs. « calculated by means of Egs. (4.6) and (4.12); &n = 1.
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Fig. 5. Plots of J. vs. x; for different values of « denoted in the figure. The continuous lines
are calculated from Egs. (4.3) and Eq. (4.14). The circles are computed independently, by
numerical solution of the original system partial differential equations; see Section 5.2 in Ref.

[8].
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Fig. 6. Plots of Je vs. x; for smaller values of « denoted in the figure (cf. Fig. 4). The curves
for = 5° and 10° are calculated from Egs. (4.3) and Eq. (4.14). The curve for « = 0 is

computed by means of Eq. (A.14) in Appendix A.
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Fig. 7. Dependence of the force coefficients f,, and fr = f,»sin“c on a for g, = 1. The curves
are calculated with the help of Egs. (4.3) and (4.13).
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Fig. 8. Dependence of D on « for various &, denoted in the figure. The curves are calculated
with the help of Eq. (5.9).
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Fig. 9. Dependence of v on « for various &, denoted in the figure; v is calculated as the
smallest positive root of Eq. (5.17).
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Fig. 10. Dependence of C on « for various &, denoted in the figure. The curves are calculated
as explained in the text.
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Fig. 11. Dependence of the force coefficient fz on « for various &, denoted in the figure. The
curves are calculated as explained in Section 5.5.
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Fig. 12. Plots of J vs. x;

2. The continuous lines are calculated as explained in Section 5.5. The circles are

computed independently, by numerical solution of the original system partial differential

equations; see Section 5.2 in Ref. [8].

(b) &on

44



. fluid

Fig. 13. Two particles attached to the boundary water—nonpolar fluid, which are separated at a
center-to-center distance L. For L >> r., the electric field of each particle in isolation is
identical to the electric field of a dipole, whose dipole moment is given by Eq. (6.2).
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Fig. 14. Plot of Dsin®a vs. « for various &n denoted in the figure. The dipole moment pq oc
Dsin®« increases monotonically with the rise of «; see Eq. (6.2). The values of D are the same

as in Fig. 8.
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Fig. 15. Plot of py/ps* vs. « for various &n. The curves are calculated by means of Eq. (6.7)
where D is the same as in Fig. 8.
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