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1. Introduction

In emulsification processes, various techniques are in use for dispersing one liquid in another,
immiscible liquid. Besides techniques relying on stirring, the action of ultrasound, and the
effects of a turbulent flow of the two-phase mixture through a narrow gap, an important
technique relies on the break-up of a thread of one liquid in a confined coaxial flow with the
other liquid as the surrounding carrier fluid. Usually, an arrangement of many liquid jets in
the carrier flow is produced by an array of nozzle holes. The geometry with a single jet is
arrangement of a liquid cylinder in a confined coaxial pipe flow, so that the ambient flow does
not extend to infinity. The jet breaks down due to its capillary instability and forms the
droplets to be emulsified. The present paper undertakes a linear temporal stability analysis of
this flow and derives its dispersion relation. Predictions about the most probable drop size
derived from the dispersion relation at the maximum growth rate of axisymmetric
disturbances are compared with experimental data from the literature.

2. Description of the undisturbed coaxial flow

The coaxial flow situation is described by the sketch in Fig. 1, which defines the properties of
the inner and outer flows of the two liquids. The outer flow is the carrier liquid, and the inner
one the liquid to be turned into droplets in order to be emulsified. The whole process takes
place in a confined flow situation with the inner radius R of the tube, inside which the carrier
liquid and a jet of the liquid to be emulsified move. As an alternative, one could certainly
consider a case where the jet of liquid to be emulsified is ejected into an infinite bath of the
carrier liquid. This is the case considered in [1], but using the method of viscous potential
flow.

In the figure, the liquids flow from left to right due to an applied pressure difference per unit
length down the tube. The spaces they occupy are the cylinder of radius a for the inner, and
the annular space a < r <R for the outer liquid. Both liquids are treated as incompressible and
Newtonian. The effects of body forces are neglected. The flow is considered as steady,
hydraulically developed, and axisymmetric. The pressure drop is the same for both the inner
and the outer liquid, since without body forces the pressure in hydraulically developed flow
can only be the same for both the inner and the outer flows — except a constant pedestal which
is due to the curved surface of the jet of inner liquid and does not change the pressure gradient
in the axial direction.
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Fig. 1: Coaxial two-component liquid flow in a confined geometry.

The flow is described by the equations of motion in cylindrical coordinates for incompressible
Newtonian fluids, which are not detailed here. For the hydraulically developed, steady and
axisymmetric flow, the only velocity component that does not vanish identically is the axial
component U, (in the z direction). The differential equation which governs the velocity
profiles U,(r) for both the inner and the outer flows reads

dp 1d( dU (r))
O=—+p—|r—2=| . 1
dz Mr dr(r dr O
The general solution is
Uz(r)zi@rumnwD : 2)
4u dz

where C and D are constants which are to be determined by the boundary conditions of the
flow. For distinguishing between the two flow regimes, we denote the inner flow with
subscript i, and the outer flow with subscript 0. The total number of unknown constants in the
two velocity profiles U,i(r) and U,,(r) for the inner and outer flows, respectively, is five —
four constants C and D, and the radius a of the inner jet. The five conditions available for
determining the five values read

du,,

1. drz’l =0 regularity of the solution on the axis; (3a)
r=0
dUzi dUz o . .

2. W dr, =U, dr, shear stress continuous at the interface; (3b)
3. U, s 0 no-slip condition at the inner wall of the tube; (3c)
4. U, = u,, . no-slip condition at the interface; (3d)
5. J.Uz’i 27mdr = Vl inner volume flow rate for determining a. (3e)

r=0

Application of the first four conditions to the general solution (2) of the equation of motion
(1) yields the constants C, = C; =0,

D, = —L@R2 , (4a)
4p, dz

and



2
D =Pl Rl (4b)
i dz | m,la

Denoting the viscosity ratio ui/ue:=¢, the two velocity profiles read

1. dp,|a a’) 1’
Z,l(r) 4].11 dZ |:R2 8( sz R2 ( a)
and
2
U, ()= L 9Pge1_ T (5b)
’ 4p, dz R

for the inner and outer flows, respectively, which we will represent by the form U,(r)=A+Br*
later. For determining the radius a of the inner liquid flow, the volume flow rates of the outer
and the inner flows can be determined by integration of the velocity profiles. The result for
the inner flow is

2 2
Vv =— “dpzjn 2—1 —r— rdr =~ 9P g a4 ol n2 12 1 (6)
2u, dz K, a’ 8u, dz R K, R° )R

r=0

The same calculation can also be carried out for the outer fluid, where the integration of the
velocity profile over the domain a < r < R must yield the volume flow rate of the outer liquid

as
. T dp ? n dp a’
V=— l-—|jrdr=———R"1-2—|1-——|]| . 7
° 2p,dz I{ Rz} T8, dz [ Rz( 2R’ @)

r=a

Calculating the ratio of these two equations, and denoting the ratio of the volume flow rates
V,/V, = ¢, we obtain for the ratio of the radii of the filament and of the tube

i:[wll+¢/8—(1+¢):ll/2 ®)

R Ve—-(2+09)

This equation yields the correct asymptotic behaviour, i.e. a/R—1 for ¢—o0, and a/R—0 for
¢—0. Also, for e=1 the sum of the two flow rates yields the flow rate of the Hagen-Poiseuille
flow in the tube with radius R. For the later calculation, the ratio of the volume flow rates of
liquid V; of the inner flow and V, of the outer flow and the viscosity ratio of the two fluids

will be taken as known and the jet radius a determined using (8). Experimental values for
realistic situations may, e.g., be taken from [2].

3. Linear stability analysis

Our analysis considers the linear temporal instability of the coaxial flow against axisymmetric
disturbances. A similar analysis, but for different flow geometry, was carried out by the
authors of [1], who derived a dispersion relation for the flow. Also, they did not derive
information about a drop size from this kind of an analysis. Also, they used the concept of
viscous potential flow with viscous pressure correction, according to [3].
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For analysing the behaviour of a disturbance of the base flow we linearise the momentum
equations. Using the decomposition of the radial and axial velocities into a base flow part
(upper-case U) and a disturbance part (lower-case u), the linearised momentum equations for
an incompressible Newtonian fluid in cylindrical coordinates are (subscript r — radial,
subscript z — axial velocity component) read

2
r component %+U Q, _ —l@#{g(l Q(mr)}r ° ur} (9a)

ot ‘oz por  |orlror 07
and
2
z component Ou, +u, du, +U, Qu, _ —l@-{-\/ lg(r 8u2j+ 0 112Z . (9b)
ot dr 0z p oz ror\ or 0z

In these equations, the pressure p and the lower-case velocities are due to the disturbance.
Equations (9a) and (9b) must later be formulated for the inner and outer flows separately for
analysing the disturbances. Accordingly, for the two different flow regions, the related
undisturbed base-flow velocities U, must be taken. The latter are given by Egs. (5a) and (5b)
above for the inner and outer flows, respectively.

The continuity equation for the axisymmetric disturbance in cylindrical coordinates reads

10 ou,
;g(mr)ﬁ‘ o =0 . (10)

The approach to a solution of the set of equations (9)—(10) is to first formulate the disturbance
velocities in the radial and the axial directions using the Stokes stream function  as per

u =10¥ and o, =-19¥ (11a,b)
roz r or

which ensures that the continuity equation (10) is satisfied automatically. For the stream
function we get from the momentum equations that it must be of the form

v ="¥(r) explikz + ot) . (12)

In this equation, k is the (real) dimensional wave number, and o= oFi®; is a complex
frequency, where ®, may be interpreted as a growth rate of the disturbances, and ; as the
oscillation frequency. Eliminating the pressure from the momentum equations (9a) and (9b)
and substituting the definitions (11a,b) into the resultant equation, we obtain the relation

2+UZ£—VD qu:rg 1dU, \ov , (13)
ot 0z or\r dr )0z
where the operator D is
8 10 ¢
— - 14
or* ror 9z° (14



The differential equation (13) for the stream function differs from the corresponding one
obtained by Tomotika [4] in that, on the left-hand side, a substantial derivative of Dy occurs
rather than a derivative w.r.t. time alone, and that the right-hand side is not zero at the first
glance. When examining the term on the right in (13), however, we see that, for a parabolic
velocity profile of the form U,r)=A+Br’, as found in the present investigations, the term
vanishes, since the argument of the partial derivative w.r.t. r is a constant. So the differential
equation (13) is in fact

0 0
—+ U, ——-vD Dy=0 . 15
[a; Zazv]w (15)

For this equation, the argumentation of Tomotika, saying that the operator in round brackets
and D are commutative, still holds. We can therefore compose the stream function of two
components, ¢y = y; + yo = (V+¥,)-exp(ikz+ot), which are given by the two differential
equations

Dy, =0
Dy, - L[2% 2 (16)
v Ot 0z

Following the structure (12) of the stream functions, which holds for y; and v, also, we
obtain for the amplitude functions ¥ and ¥, the two ordinary differential equations

P -] -k’ =0 (17a)
and
o+ikU,(r)

r°¥) ¥ —rz(k2 +
v

}Pz o, (17b)

respectively, where the primes indicate derivatives w.r.t. the radial coordinate r. Equation
(17a) is a Bessel differential equation, for which we obtain, in the same manner as in [4], the
solution

v, (r,z,t)=[A 11, (ke) + A, 1K, (kr)]- exp(ikz + ot) . (18)

The solution of the second ODE (17b) requires some more care. The equation corresponds to
the form

Xzy"+(axn +b)xy'+(ax2“+[3x“+y)y=0 (19)

given as type 2.215 in [5], with a= 0, b= —1, n= 2, o= —ikB/v, f= —k’— (o+ikA)/v, and y= 0,
for the velocity profile Uyr) given as Uyr)= A+Br® for our present parabolic base flow
velocity distributions. In (19), x corresponds to r, and y to W,. First a transformation to a
simpler form of the ODE using

¥, (r)=& -n(€) with &=r"=r’, wherej is a solution of 4j* — 4j=0 (20)

leads us to two differential equations, one for each value j= 0 and j= 1 obtained from (20).
The transformed differential equations read

(21a)



. 2 .
ikB k c0+1kAJn:O . 21b)

(G=1) én”+2n’+£—xﬁ—7— .

We first look at the first equation (21a) (for j= 0), which may be transformed by

X, = +/—ikB/4v &, y,(x,)=n(&) into the form

_k:_co+ikA
4 4v

=0 ,
\/_ikB YI
4v

X,y +| X, + (22)

which is of type 2.92 in [5]. From the information about ODE type 2.134 in [5] we find that
(22) may be transformed by x,=2ix, y2(x2)=y1(X;) into the form

4.y, —(xz ik \/(f)i;;l;‘j) V)] v =0 . 23)

from where the transformation y,(x;)=x,exp(-x»/2) u(x;) leads us to the differential equation

[ ik +(o+rikA)v)
X,u" + (2= x, u’ (1 i By ] =0 . (24)

This equation is easily recognized as the confluent hypergeometric differential equation in the
function u(x;). The general solution of this equation is

ik +(o+ikA)/v i K+ (o+ikA)/v
u(x,)= CM(l i wB 2x2J+C U(l 4 kB ,2,%, [, (25)

where the functions M and U are confluent hypergeometric functions of the first and second
kinds, respectively [6]. The former is also called Kummer’s function. In this solution we must
discard the function U, which is undefined for the value of 2 of the second argument, by
setting C,= 0. The various transformations back to the original equation (17b) lead to the final
formulation of its general solution, which finally reads

‘Pz’o(r)z G, \/@r exp( kB/(4v)) (1+ 1 \/_k2 E/CT{;;IiA)/ ,2,—@#} , (26)

where Cy is an arbitrary constant. When solving the ODE (21b) for j= 1 above in the same
way, we see that, after discarding undefined parts of the solution, we obtain the result

‘1’2’1(r):C1 \/?rzexp(—ﬁ ikB/(4v)) {1——\/_1(2 E/mk];;l\{/A)/ ,2, ?rzj, 27

with an arbitrary constant C;. This finalises the solution of the differential equation (15) for
the stream function. The general solution is obtained from (18), (26), and (27) as
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) kr)+C K, (kr)+

\/7 1kB/ 4\/) [ \/_k +£/0)k41;;kA)/ ,2,—\/§r2j+
\/7f eXpi\~ 1kB/(4V)) {1——\/_1(2 E/O;:];;l\{/A)/ ,Z,Er H~exp(ikz+mt)

(28)
This equation corresponds to Tomotika’s solution (15) in his paper [4]. The stream function
(28) must be formulated for the inner and outer cylindrical flows. The functions read

) [Cl 1rI )

/ KB, 2 exp 2, fikB, /(4v,) ) { 1\/_k +E/(’;:];ﬂ/(\‘;“ v, o - ﬂi}]?irz}r

+C4,i1}ﬂiBirzexp(—rﬂ/ikBi/Mw5) {l——\/_k +E/?(J];11/<A v, L2, ﬂiBiTZH'eXP(ikZﬁLwt)
i v i

(29a)
and

v, (r,z,t)= [C1 oI kr)+C 1K, (kr)+

ikB, rexp(r2 ikB /4v ) £1+1\/_k +Horika, )y, ° 2,— ikB"r2J+
v, VKB, /v, v,

+C4,01/ﬂiB° rzeXP(_rz\/ikBo/(4Vo)) (1——\/_1( +E/01)(;l;é v, *,2, /ﬂi}B" rzﬂ-exp(ikz+(ot)

, (29b)
respectively, where the function K;, which diverges for r—0, was discarded from the inner
function ; by setting C,; = 0. The constants A and B for the inner and outer flows are

—

+C5,

2 2
2, R(IR) 2, |
A== St Bi=-tog 7 (30a)
o a m R a a
1-25 |1- g1-2"51-—
R 2R 2R
2V, 1 2V, 1
A, = o e — B, = -8 > > (30b)
=272 -2 2
R 2R R 2R

3.1 Boundary conditions
We now use the stream functions (30a) and (30b) for formulating the boundary conditions
available for calculating the seven integration constants C; ; —C4,. The seven conditions are

1. no slip at the tube wall r=R (u, o(r=R)= 0, u,,(r=R)= 0 — two conditions); (31a)
2. no slip at the interface of the two flows (u.i(r=a)= u.(r=a), u,i(r=a)= u,.(r=a) (31b)
— two conditions);
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tangential stress on the interface is continuous at the interface r=a; (31c)

4. the difference in the normal stress between the inner and outer flows at the (31d)
interface r=a is due to the interfacial tension o;

5. regularity of the right-hand sides of the momentum equations (10a) and (10b) (31e)

on the tube axis r=0.

We first look at the first boundary condition (31a). It requires that the disturbance velocities,
in the same manner as the velocities of the undisturbed base flow, vanish at the tube wall. The
related equations read

_loy,
PRt Oz

=0and u,, :—l%

=0 , 32a,b
TR r Or ( )

r=R

r=R
and we obtain from them the requirements that
C, L (kR)+C, K, (kR)+

+C,, /ﬂ‘ﬁR exp(R2 ikB, /(4v, )-MloR +C,, /ikB° Rexp(—R2 ikB, / 4v0))-M20R =0
V0 Vo

(33a)

and

Cl,okIO (kR) - Cz,okKo (kR) +

°exp(R2 ikB, /(4v, ){MM{Jr ﬂi}iRzeMmR M;()Rﬂ (33b)

o

ikB

+2C;,

o

+2C,, /ﬂi/B" exp(—R2 ikBO/(4\/O))-{M20R - ﬂi}iRz(%M%R L H =0

In these equations we have set

2 . .
M, =M 1+l\/;k +((o+1kA0)/v0,2’_ 11<BORz and (342)
4 JkB, /v, v,

MZOR—Ml——\/_ K+t kA v, 5 [ikBypo| (34b)
JkB, /v, v,

The prime at the M indicates the first derivative of Kummer’s function w.r.t. the third
argument.

The second boundary condition (31b) states that the velocities of the inner and outer flows are
equal at the interface r=a, i.e., that

(35a,b)

and u .

This is equivalent to the requirements that
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oz|_, 0z|_ or|_ ~oOr|_,
This requirement leads to the two equations
C, 1 (ka)+C;; /—aexp 1kB/ )) M, +
+C,; IkB, aexp( a’,[ikB, /(4v, }) M,, =
vl
C,J (ka)+C, K, (ka)+ (37a)
+C,, ikB, exp( /ikB /i4v )) M, +
VO
+C,, ikB, aexp( ikB, /(4v, )MZOa
VO
and
C, kI, (ka)+2C;, /— exp JikB, /(4v,) {Mha + / Mha M. }
2C41 ﬁexp( lkB/4V |:M2 lki ? lMZla M21a):|=
\/ \Z \Z 2
C, kI, (ka)-C, kK, (ka) (37b)
+2C,, /lkB 1kB /4v {Ml + lkB le mﬂ+
Vv, v,
+2C4,o lli/B eXp( ) |: 20a lkBO 2 20a ;oa J:|
In these equations we have used the abbreviations
2
M, =M 1+ _\/—k +(o0+ikA, )/v, 1kB (382)
\/kBi/vi V
2
M, =M 1__\/—1( ((n+1kA 2 1kB (38b)
VKB, /v, v
2 .
M, = \/—k +(o+ikA,)/v, 0 9 ikB, 2| (38¢)
VKB, /v, v,



2 . .
M, - M 1- Ly ka v, o kB, o) (38d)
4 \/kBo/Vo Vo

and the prime at the symbol M again indicates the first derivative of Kummer’s function w.r.t.
the third argument.

The third boundary condition (31c) states that the tangential stress be continuous across the
interface r=a, i.e. that

Oy 10w, Owi) _ (Ow, 1ow, 2, (39)
\or* ror oz )  Clor ror 8z )
The expressions in the brackets may be rewritten and expanded to yield
Oy 1oy 0w |_(2w 1oy, . ,
— = —= -ky, +2k7y, +
[8r2 ror 0z’ or’ r or i i
, (40)

2 .
N oy, 1oy, Ky, - o+ikU,(r)

o+1kU (r
> \|’2+2k2\|’2+ Z( )‘Vz
or r or v v

which enables us to make use of the differential equations (17a) and (17b) for simplifying
them. We obtain

(41)

o+1kU_.(r
1 (2k2\{li+—z’l() 2.J

v, | =n, (21(2‘{’0+
V‘ ’ r=a

1

o+ikU,, (r)\PMJ
v

o

r=a

Substituting the results for the amplitude functions ¥ in (29a) and (29b) into (41), we obtain
B, kU,
Hi[2k2C1,111(ka)+ Cs; \/ﬁa eXp(az\/WS). M, ,(21(2 +CO+1—Z1(8.)j .
v, -
-5, ikU .
+ C4,i\/Ea exp(— a’ ikBi/ 4v, )'MZia ,(21(2 +0)+1—Zl(a)]} _
Vi

1
V.

1

“o|:2k2CI,oIl (ka)+ 21<2C2,0K1 (ka)+ C,, /ﬂiia exp(az\/W). M,,, - [21(2 + Mj N
N e oy e ey
VO

v

o

(42)
The fourth boundary condition (31d) quantifies the difference of the normal stresses at the
inner and outer sides of the interface r=a, which is due to the action of the interfacial tension
between the two fluids. The condition says that the radial stresses X, at the two sides of the
cylinder r=a are related as

z

i ol +p, with the capillary pressure p_ = %(1 —kzaz)-é , (43)
“lr=a Plr=a a
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where & is the radial displacement of the interface between the inner and outer flows, which is
given as

1 oy ik
=|u,| dt=|— dt=—y, . 44
: J Pr=a J. aoz|._, wa Vil “44)
The capillary pressure may therefore be written as
iko
pG = _3(1_k2a2)‘ \Vi|r:a : (45)
®a

The radial stress is given as X,= —p+2uou,/0r, where the pressure p is obtained by integration
of the momentum equation (9b) and reads

p=-LZ[(w+ikU, 1))y ]-4Bpy (40)

The equation resulting from the boundary condition (31d) reads

0 (v, 4B, 1 0 (w+ikU,(r)
i (Y] 4B, 1 oforib 00 | =
L{ 8r( rj 2 Vi e ﬁr( 2 Y1 .

1

. 0(y. ) 4B 1 6 (o+iku, (r) iko )
2k —| 2> [+—2y ——— | ———— 2~ + 1-k"a” )y,
H{ ﬁr( r j v, Vo lkr ar( \ Yo . coa3( )‘lf,

o

, (47

from which form we obtain the sixth condition for the coefficients C;; — C4, by substituting
the known expressions for the stream functions. The equation finally reads

C.ue| 2071 (ka)+ B2 01 (ka)— Ka T, (ka)) - KA () -k (1_k2a2)11(ka)}+
V.

2
i iv, w,0a

+C; 8 2i£2(Mlia+ lkiaz(Mlia_‘?‘M;ia)J-’-“iMlia _ch(l_kzaz)Mlia} lkiazexpm*'
’ a \ v v, w,0a \ v,

+C, 8 2ikz(Mzia_ 1kBiaz(Mzia_2M,21a)J+4BiMzia_ 1k63 (1_kzaz)Mzia} lkBiazequa_
' a V Vi \A Hma \/ Vi

_c., zikzlg(ka)+Boa‘(le(ka)_kalo(ka))_mIo(ka)}
v, iv,
_ e, 20K ka)+ B (0K, (ka) + ka K, (ka)) “)fikAOKO(ka)} _
v, iv,

- C3 0 2ik2[Mloa + lkBO az(Mloa - 2M;oa )J + 4B0Mloa:l lkBo azexp+oa -
' a V v, v, v,

-C, 211‘(M20a [ ®B 2 (v

'
2oa 2M 20a

)J ! 4BOM203} lkBO azexp—oa =0 (48)
A% A%

o o
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Finally remains the fifth condition (31e), which is a regularity condition and brings the
seventh piece of information for the coefficients C of the stream functions in Equations (29a)
and (29b). This condition expresses that the right-hand sides, where derivatives of the
disturbance velocities or the velocities themselves are divided by the radial coordinate r, must
be regular on the tube axis r=0. This results in the requirements that

ou.. ou.., |
imT =0 | lim = =0 , lim—% = finite (49a,b,c)
=0 Jr -0 Ot >0 T

where u,; are the radial, and u,; the axial disturbance velocities of the inner flow. The
requirement (49a) for the velocity u,; is automatically satisfied by the velocity as defined by
equation (11b). The two conditions (49b) and (49c¢) identically lead to the requirement that the
derivative of u,; w.r.t. the radial coordinate be zero at r=0. This requirement is readily
expressed by the condition that

¢, k1(0)+ Mg, o P g (50)
Vi Vi

which is the seventh and last condition needed for establishing the dispersion relation of the
present flow.

3.2 Dispersion relation

The homogeneous system of equations (33a,b), (37a,b), (42), (48), and (50) for the seven
integration constants C,;; through Cs,, obtained as a result of application of the seven
conditions in (30a) through (30e) to the disturbance stream functions (29a) and (29b), exhibits
non-trivial solutions if and only if the value of the coefficient determinant vanishes. This
condition finally yields the dispersion relation of the system. This condition for the coefficient
determinant, after cancellation of some common factors from the second, third, sixth and
seventh columns, is given as equation (51) on the following page. In that equation, we have
used abbreviations given below the equation in order to keep the handling of the equation
feasible.
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0 0 0
0 0 0
Il(ka) Miia Maia
kalo(ka) 2F,, 2F,,
2k*a’eli(ka) eMiiki; eMaigk;
G Gs;i Guy,i
ka I; (0) €XP_ia €XPia

where we have used the following abbreviations:

2
Ml 1+L 1 \/-k +(o+ikA,)/

MloR { \/kB /V

2
0,2’ 1kBOR2 M, = 1__\/—11( +(w+ikA,) 0,2,
VKB, /v, v,

Kl(kR) R exp, Rexp i
I,(kR —=M,, —=M,,
1( ) KO(ka) a exp+oa o a eXp —oa o
K, (kR) exp exp_
k I kR *ka 0 2F . +0R 2F . oR
k) Koka) " Mewn,  ew,
Lk _Kylka) M M
~Ti(ka) K, (ka) —Mioa ~Maoa
—kalp(ka) —ka —2F, -2F,, =0
K, (ka)
—21(2 321 ka _2k2 2 1 -M oak 0 -M Oak 0
1(ka) Ko(k a) 1oaK1, 20aK1,
Gl,o G2,0 G3,0 G4,0
0 0 0 0
kB, Rz}

Mloa = [

b b

1 K +(o+ikA)/v, X 1 =K +(o+ikA)
Lo, , /VO } M, = (1 e,

0,2, /1kB ]
1,2’ /1kB J

13
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ikB; , M. = 1__\/—k +(w+ikA,)/
JkB, /v,

(51



[ikB, _,(1 N ikB, "
F3,oR =M, + Rz(_MloR loR) > 40R =M, - R2 My — 20Rj
v, 2 v,
ikB, (1 " 1 ,
31a lla Mlla - lla b F4,ia = M21a - a _M2ia _MZia .
v, 2 v, 2
3oa = loa

lkB l Mloa loaj ’ F4,oa = M2oa - ikBO az(lMZ()a - M;aa } b
v, 2 v, 2
k — 2k2 2 (’0+lkUZ1 a') 2 klo — 2k2a2 + (’0+ikUZ,0(a)aZ
B v,
3 .
G,, ={2ik2a21;(ka)+B (21, (ka)~ ka I, (ka )) - KA azlo(ka)—lk—"@—kzaz)ll(ka)}
Hi®

2M’

ia lla

G3i = S|:2ika(M11a + lla ko (1 k2 2) 113:|
, TR

G4,i = 8{2ika(M2ia - ia _2M21a J 21a _11(70(1 k2 2) 21a:|
B.a

G,, =2k’ (ka)+v—(2l (ka)—kaT, (ka))— 2K 22 (1ca)

V;
1kB
1/ M,
Vi
ikB, ,
a’ M,
Vi

Gy, = 2ikta? Kilka) Bt [2 K,(ke) +kaj +maz

Ko(ka) v, Ko(ka) v,
: 3
G, —21ka(Mloa+ /lkB°a2(Mloa—2M;m)j+4B°a M,
VD VO
: 3
G4o:2ika(M20a_ lkﬁaz(MZOa 2M,203)J+4B0a MZoa N
' o VO

The result of our present analysis is therefore a determinantal equation, analogous to what
Tomotika obtained. Due to the different base flow case treated here, however, in contrast to
[4], the determinant consists of seven components rather than of only four. Also, since we
treat a confined flow here, in contrast to the unbounded flow analysed by Tomotika, the
determinantal equations are not readily comparable.

4. Analysis of the dispersion relation

Subsequently, we analyse the dispersion relation (51), to some degree following the lines of
Tomotika [4]. We first attempt to evaluate (51) in full generality, and then look at the
behaviour of the system under the assumption that inertia plays a far smaller role than
viscosity and capillarity. This means that, in the second step, we get rid of all terms exhibiting
the densities of the two fluids.

For starting, we take as known for the flow problem at hand the two volume flow rates Vl and
\70, and the fluid properties such as the dynamic viscosities p; and p, and densities p; and p,.

Also we take as known the inner radius R of the tube. This enables us to calculate the radius
of the filament using equation (8), so that all geometrical parameters of the flow field are
known then. Furthermore, we set values of the wave number ka between 0 and 1 first and then
determine the complex value of the complex frequency w, which satisfy Eq. (51). This puts
out the oscillation frequency and the damping or growth rates under the disturbance with ka.
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