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1. Introduction 
In emulsification processes, various techniques are in use for dispersing one liquid in another, 
immiscible liquid. Besides techniques relying on stirring, the action of ultrasound, and the 
effects of a turbulent flow of the two-phase mixture through a narrow gap, an important 
technique relies on the break-up of a thread of one liquid in a confined coaxial flow with the 
other liquid as the surrounding carrier fluid. Usually, an arrangement of many liquid jets in 
the carrier flow is produced by an array of nozzle holes. The geometry with a single jet is 
arrangement of a liquid cylinder in a confined coaxial pipe flow, so that the ambient flow does 
not extend to infinity. The jet breaks down due to its capillary instability and forms the 
droplets to be emulsified. The present paper undertakes a linear temporal stability analysis of 
this flow and derives its dispersion relation. Predictions about the most probable drop size 
derived from the dispersion relation at the maximum growth rate of axisymmetric 
disturbances are compared with experimental data from the literature. 
 
2. Description of the undisturbed coaxial flow 
The coaxial flow situation is described by the sketch in Fig. 1, which defines the properties of 
the inner and outer flows of the two liquids. The outer flow is the carrier liquid, and the inner 
one the liquid to be turned into droplets in order to be emulsified. The whole process takes 
place in a confined flow situation with the inner radius R of the tube, inside which the carrier 
liquid and a jet of the liquid to be emulsified move. As an alternative, one could certainly 
consider a case where the jet of liquid to be emulsified is ejected into an infinite bath of the 
carrier liquid. This is the case considered in [1], but using the method of viscous potential 
flow. 

In the figure, the liquids flow from left to right due to an applied pressure difference per unit 
length down the tube. The spaces they occupy are the cylinder of radius a for the inner, and 
the annular space a ≤ r ≤ R for the outer liquid. Both liquids are treated as incompressible and 
Newtonian. The effects of body forces are neglected. The flow is considered as steady, 
hydraulically developed, and axisymmetric. The pressure drop is the same for both the inner 
and the outer liquid, since without body forces the pressure in hydraulically developed flow 
can only be the same for both the inner and the outer flows – except a constant pedestal which 
is due to the curved surface of the jet of inner liquid and does not change the pressure gradient 
in the axial direction. 
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Fig. 1: Coaxial two-component liquid flow in a confined geometry. 

 
The flow is described by the equations of motion in cylindrical coordinates for incompressible 
Newtonian fluids, which are not detailed here. For the hydraulically developed, steady and 
axisymmetric flow, the only velocity component that does not vanish identically is the axial 
component Uz (in the z direction). The differential equation which governs the velocity 
profiles Uz(r) for both the inner and the outer flows reads 
 

( )
⎟
⎠
⎞

⎜
⎝
⎛+−=

dr
rdUr

dr
d

r
1µ

dz
dp0 z   .                                            (1) 

The general solution is  
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where C and D are constants which are to be determined by the boundary conditions of the 
flow. For distinguishing between the two flow regimes, we denote the inner flow with 
subscript i, and the outer flow with subscript o. The total number of unknown constants in the 
two velocity profiles Uz,i(r) and Uz,o(r) for the inner and outer flows, respectively, is five – 
four constants C and D, and the radius a of the inner jet. The five conditions available for 
determining the five values read 
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Application of the first four conditions to the general solution (2) of the equation of motion 
(1) yields the constants Co = Ci = 0, 
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Denoting the viscosity ratio µi/µo:=ε, the two velocity profiles read 
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for the inner and outer flows, respectively, which we will represent by the form Uz(r)=A+Br2 
later. For determining the radius a of the inner liquid flow, the volume flow rates of the outer 
and the inner flows can be determined by integration of the velocity profiles. The result for 
the inner flow is 
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The same calculation can also be carried out for the outer fluid, where the integration of the 
velocity profile over the domain a ≤ r ≤ R must yield the volume flow rate of the outer liquid 
as  
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Calculating the ratio of these two equations, and denoting the ratio of the volume flow rates 

ϕ=:V/V oi
&& , we obtain for the ratio of the radii of the filament and of the tube 
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This equation yields the correct asymptotic behaviour, i.e. a/R→1 for ϕ→∞, and a/R→0 for 
ϕ→0. Also, for ε=1 the sum of the two flow rates yields the flow rate of the Hagen-Poiseuille 
flow in the tube with radius R. For the later calculation, the ratio of the volume flow rates of 
liquid iV&  of the inner flow and oV& of the outer flow and the viscosity ratio of the two fluids 
will be taken as known and the jet radius a determined using (8). Experimental values for 
realistic situations may, e.g., be taken from [2]. 
 
3. Linear stability analysis 
Our analysis considers the linear temporal instability of the coaxial flow against axisymmetric 
disturbances. A similar analysis, but for different flow geometry, was carried out by the 
authors of [1], who derived a dispersion relation for the flow. Also, they did not derive 
information about a drop size from this kind of an analysis. Also, they used the concept of 
viscous potential flow with viscous pressure correction, according to [3]. 
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For analysing the behaviour of a disturbance of the base flow we linearise the momentum 
equations. Using the decomposition of the radial and axial velocities into a base flow part 
(upper-case U) and a disturbance part (lower-case u), the linearised momentum equations for 
an incompressible Newtonian fluid in cylindrical coordinates are (subscript r – radial, 
subscript z – axial velocity component) read 
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In these equations, the pressure p and the lower-case velocities are due to the disturbance. 
Equations (9a) and (9b) must later be formulated for the inner and outer flows separately for 
analysing the disturbances. Accordingly, for the two different flow regions, the related 
undisturbed base-flow velocities Uz must be taken. The latter are given by Eqs. (5a) and (5b) 
above for the inner and outer flows, respectively. 
 
The continuity equation for the axisymmetric disturbance in cylindrical coordinates reads 
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The approach to a solution of the set of equations (9)–(10) is to first formulate the disturbance 
velocities in the radial and the axial directions using the Stokes stream function ψ as per  
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which ensures that the continuity equation (10) is satisfied automatically. For the stream 
function we get from the momentum equations that it must be of the form 
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In this equation, k is the (real) dimensional wave number, and ω= ωr+iωi is a complex 
frequency, where ωr may be interpreted as a growth rate of the disturbances, and ωi as the 
oscillation frequency. Eliminating the pressure from the momentum equations (9a) and (9b) 
and substituting the definitions (11a,b) into the resultant equation, we obtain the relation 
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where the operator D is  
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The differential equation (13) for the stream function differs from the corresponding one 
obtained by Tomotika [4] in that, on the left-hand side, a substantial derivative of Dψ occurs 
rather than a derivative w.r.t. time alone, and that the right-hand side is not zero at the first 
glance. When examining the term on the right in (13), however, we see that, for a parabolic 
velocity profile of the form Uz(r)=A+Br2, as found in the present investigations, the term 
vanishes, since the argument of the partial derivative w.r.t. r is a constant. So the differential 
equation (13) is in fact 
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For this equation, the argumentation of Tomotika, saying that the operator in round brackets 
and D are commutative, still holds. We can therefore compose the stream function of two 
components, ψ = ψ1 + ψ2 = (Ψ1+Ψ2)⋅exp(ikz+ωt), which are given by the two differential 
equations 
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Following the structure (12) of the stream functions, which holds for ψ1 and ψ2 also, we 
obtain for the amplitude functions Ψ1 and Ψ2 the two ordinary differential equations 
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respectively, where the primes indicate derivatives w.r.t. the radial coordinate r. Equation 
(17a) is a Bessel differential equation, for which we obtain, in the same manner as in [4], the 
solution  
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The solution of the second ODE (17b) requires some more care. The equation corresponds to 
the form  
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given as type 2.215 in [5], with a= 0, b= –1, n= 2, α= –ikB/ν, β= –k2– (ω+ikA)/ν, and γ= 0, 
for the velocity profile Uz(r) given as Uz(r)= A+Br2 for our present parabolic base flow 
velocity distributions. In (19), x corresponds to r, and y to Ψ2. First a transformation to a 
simpler form of the ODE using 
 

( ) ( )ξηξrΨ j
2 ⋅=   with   ξ= rn= r2, where j is a solution of 4j2 – 4j= 0          (20) 

 
leads us to two differential equations, one for each value j= 0 and j= 1 obtained from (20). 
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We first look at the first equation (21a) (for j= 0), which may be transformed by 
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which is of type 2.92 in [5]. From the information about ODE type 2.134 in [5] we find that 
(22) may be transformed by x2=2ix1, y2(x2)=y1(x1) into the form 
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from where the transformation y2(x2)=x2exp(-x2/2) u(x2) leads us to the differential equation  
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This equation is easily recognized as the confluent hypergeometric differential equation in the 
function u(x2). The general solution of this equation is  
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where the functions M and U are confluent hypergeometric functions of the first and second 
kinds, respectively [6]. The former is also called Kummer’s function. In this solution we must 
discard the function U, which is undefined for the value of 2 of the second argument, by 
setting C2= 0. The various transformations back to the original equation (17b) lead to the final 
formulation of its general solution, which finally reads 
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where C0 is an arbitrary constant. When solving the ODE (21b) for j= 1 above in the same 
way, we see that, after discarding undefined parts of the solution, we obtain the result  
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with an arbitrary constant C1. This finalises the solution of the differential equation (15) for 
the stream function. The general solution is obtained from (18), (26), and (27) as 
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(28) 
This equation corresponds to Tomotika’s solution (15) in his paper [4]. The stream function 
(28) must be formulated for the inner and outer cylindrical flows. The functions read 
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respectively, where the function K1, which diverges for r→0, was discarded from the inner 
function ψi by setting C2,i = 0. The constants A and B for the inner and outer flows are 
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3.1 Boundary conditions 
We now use the stream functions (30a) and (30b) for formulating the boundary conditions 
available for calculating the seven integration constants C1,i –C4,o. The seven conditions are 
 
1. no slip at the tube wall r=R (ur,o(r=R)= 0, uz,o(r=R)= 0 – two conditions); (31a) 
2. no slip at the interface of the two flows (ur,i(r=a)= ur,o(r=a), uz,i(r=a)= uz,o(r=a) 

– two conditions); 
(31b) 
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3. tangential stress on the interface is continuous at the interface r=a; (31c) 
4. the difference in the normal stress between the inner and outer flows at the 

interface r=a is due to the interfacial tension σ; 
(31d) 

5. regularity of the right-hand sides of the momentum equations (10a) and (10b) 
on the tube axis r=0. 

(31e) 

 
We first look at the first boundary condition (31a). It requires that the disturbance velocities, 
in the same manner as the velocities of the undisturbed base flow, vanish at the tube wall. The 
related equations read 
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and we obtain from them the requirements that 
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( )( ) 0MM
2
1R

ν
ikBM4νikBRexp

ν
ikB2C

MM
2
1R

ν
ikBM4νikBRexp

ν
ikB2C

kRkKCkRkIC

2oR2oR
2

o

o
2oRoo

2

o

o
o4,

1oR1oR
2

o

o
1oRoo

2

o

o
o3,

0o2,0o1,

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ′−−⋅−+

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ′−+⋅+

+−

         (33b) 

 
In these equations we have set 
 

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

++
+= 2

o

o

oo

oo
2

1oR R
ν

ikB2,,
νkB

νikAωki
4
11MM    and                 (34a) 

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
−−= 2

o

o

oo

oo
2

2oR R
ν

ikB2,,
νkB

νikAωki
4
11MM   .                      (34b) 

 
The prime at the M indicates the first derivative of Kummer’s function w.r.t. the third 
argument. 
 
The second boundary condition (31b) states that the velocities of the inner and outer flows are 
equal at the interface r=a, i.e., that 
 

aror,arir, uu
==

=     and    
aroz,ariz, uu

==
=   .                                  (35a,b) 

 
This is equivalent to the requirements that 
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ar

o

ar

i

z
ψ

z
ψ

==
∂
∂

=
∂
∂  and   

ar

o

ar

i

r
ψ

r
ψ

==
∂
∂

=
∂
∂   .                                (36a,b) 

 
This requirement leads to the two equations 
 

( ) ( )( )

( )( )
( ) ( )

( )( )

( )( ) 2oaoo
2

o

o
o4,

1oaoo
2

o

o
o3,

1o2,1o1,

2iaii
2

i

i
i4,

1iaii
2

i

i
i3,1i1,

M4νikBaexpa
ν

ikBC

M4νikBaexpa
ν

ikBC

kaKCkaIC

M4νikBaexpa
ν

ikBC

M4νikBaexpa
ν

ikBCkaIC

⋅−+

+⋅+

++

=⋅−+

+⋅+

                                                            (37a) 

 
and 
 

( ) ( )( )

( )( )
( ) ( )

( )( )

( )( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ′−−⋅−+

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ′−+⋅+

+−

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ′−−⋅−+

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ′−+⋅+

2oa2oa
2

o

o
2oaoo

2

o

o
o4,

1oa1oa
2

o

o
1oaoo

2

o

o
o3,

0o2,0o1,

2ia2ia
2

i

i
2iaii

2

i

i
i4,

1ia1ia
2

i

i
1iaii

2

i

i
i3,0i1,

MM
2
1a

ν
ikBM4νikBaexp

ν
ikB2C

MM
2
1a

ν
ikBM4νikBaexp

ν
ikB2C

kakKCkakIC

MM
2
1a

ν
ikBM4νikBaexp

ν
ikB2C

MM
2
1a

ν
ikBM4νikBaexp

ν
ikB2CkakIC

           (37b) 

 
In these equations we have used the abbreviations 
 

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

++
+= 2

i

i

ii

ii
2

1ia a
ν

ikB2,,
νkB

νikAωki
4
11MM                         (38a) 

 
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
−−= 2

i

i

ii

ii
2

2ia a
ν

ikB2,,
νkB

νikAωki
4
11MM   ,                     (38b) 

 
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

++
+= 2

o

o

oo

oo
2

1oa a
ν

ikB2,,
νkB

νikAωki
4
11MM   ,                    (38c) 
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( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
−−= 2

o

o

oo

oo
2

2oa a
ν

ikB2,,
νkB

νikAωki
4
11MM   ,                   (38d) 

 
and the prime at the symbol M again indicates the first derivative of Kummer’s function w.r.t. 
the third argument. 
 
The third boundary condition (31c) states that the tangential stress be continuous across the 
interface r=a, i.e. that  
 

ar
2
o

2
o

2
o

2

o

ar
2
i

2
i

2
i

2

i z
ψ

r
ψ

r
1

r
ψµ

z
ψ

r
ψ

r
1

r
ψµ

==
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−
∂
∂   .                           (39) 

 
The expressions in the brackets may be rewritten and expanded to yield 
 

( ) ( )
⎟⎟
⎠

⎞+
++

+
−−

∂
∂

−
∂
∂

+

⎜⎜
⎝

⎛
++−

∂
∂

−
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−
∂
∂

2
z

2
2

2
z

2
22

2
2

2

1
2

1
21

2
1

2

2

2

2

2

ψ
ν

rikUωψ2kψ
ν

rikUωψk
r
ψ

r
1

r
ψ

ψ2kψk
r
ψ

r
1

r
ψ

z
ψ

r
ψ

r
1

r
ψ

, (40) 

 
which enables us to make use of the differential equations (17a) and (17b) for simplifying 
them. We obtain 
 

( ) ( )
ar

o2,
o

oz,
o

2
o

ar

i2,
i

iz,
i

2
i Ψ

ν
rikUω

Ψ2kµΨ
ν

rikUω
Ψ2kµ

==
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
+   .        (41) 

 
Substituting the results for the amplitude functions Ψ in (29a) and (29b) into (41), we obtain 
 

( ) ( )( ) ( )

( )( ) ( )

( ) ( ) ( )( ) ( )

( )( ) ( )
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+⋅⋅−+

⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
+⋅⋅++

=⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+⋅⋅−+

⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
+⋅⋅+

o

oz,2
2oaoo

2

o

o
o4,

o

oz,2
1oaoo

2

o

o
o3,1o2,

2
1o1,

2
o

i

iz,2
2iaii

2

i

i
i4,

i

iz,2
1iaii

2

i

i
i3,1i1,

2
i

ν
aikUω

2kM4νikBaexpa
ν

ikBC

ν
aikUω

2kM4νikBaexpa
ν

ikBCkaKC2kkaIC2kµ

ν
aikUω

2kM4νikBaexpa
ν

ikBC

ν
aikUω

2kM4νikBaexpa
ν

ikBCkaIC2kµ

 (42) 
The fourth boundary condition (31d) quantifies the difference of the normal stresses at the 
inner and outer sides of the interface r=a, which is due to the action of the interfacial tension 
between the two fluids. The condition says that the radial stresses Σrr at the two sides of the 
cylinder r=a are related as 
 

σarorr,arirr, pΣΣ +=
==

    with the capillary pressure  ( ) ξak1
a
σp 22

2σ ⋅−=   ,       (43) 
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where ξ is the radial displacement of the interface between the inner and outer flows, which is 
given as 

ari
ar

arir, ψ
ωa
ikdt

z
ψ

a
1dtuξ

=
=

=
=

∂
∂

== ∫∫   .                               (44) 

 
The capillary pressure may therefore be written as 
 

( )
ari

22
3σ ψak1

ωa
ikσp

=
⋅−=   .                                            (45) 

 
The radial stress is given as Σrr= –p+2µ∂ur/∂r, where the pressure p is obtained by integration 
of the momentum equation (9b) and reads 
 

( )( )[ ] ψ4BρψrikUω
rikr

ρp 1z −+
∂
∂

=   .                                     (46) 

 
The equation resulting from the boundary condition (31d) reads 
 

( )

( ) ( ) i
22

3
ar

o1,
o

oz,
o

o

oo
o

ar

i1,
i

iz,
i

i

ii
i

ψak1
ωa
ikσψ

ν
rikUω

rikr
1ψ

ν
4B

r
ψ

r
2ikµ

ψ
ν

rikUω
rikr

1ψ
ν

4B
r
ψ

r
2ikµ

−+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
∂
∂

−+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
∂
∂

−+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=

=   ,     (47) 

 
from which form we obtain the sixth condition for the coefficients C1,i – C4,o by substituting 
the known expressions for the stream functions. The equation finally reads 
 

( ) ( ) ( )( ) ( ) ( ) ( ) +⎥
⎦

⎤
⎢
⎣

⎡
−−

+
−−+′ kaIak1

ωaµ
ikσkaI

iν
ikAωkaIkaka2I

ν
aBkaI2ikεC 1

22
2

i
0

i

i
01

i

i
1

2
i1,  

( ) ( ) +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′−++ +ia

2

i

i
1ia

22
3

i
1ia

i

i
1ia1ia

2

i

i
1ia2i3, expa

ν
ikBMak1

ωaµ
ikσM

ν
B4M2Ma

ν
ikBM

a
k2iεC

( ) ( ) −
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′−−+ −ia

2

i

i
2ia

22
3

i
2ia

i

i
2ia2ia

2

i

i
2ia2i4, expa

ν
ikBMak1

ωaµ
ikσM

ν
B4M2Ma

ν
ikBM

a
k2iεC

( ) ( ) ( )( ) ( ) −⎥
⎦

⎤
⎢
⎣

⎡ +
−−+′− kaI

iν
ikAωkaIkaka2I

ν
aBkaI2ikC 0

o

o
01

o

o
1

2
1,o

( ) ( ) ( )( ) ( ) −⎥
⎦

⎤
⎢
⎣

⎡ +
+++′− kaK

iν
ikAωkaKkaka2K

ν
aBkaK2ikC 0

o

o
01

o

o
1

2
2,o

( ) −
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′−+− +oa

2

o

o
1oa

o

o
1oa1oa

2

o

o
1oa23,o expa

ν
ikBM

ν
B4M2Ma

ν
ikBM

a
k2iC

( ) 0expa
ν

ikBM
ν
B4M2Ma

ν
ikBM

a
k2iC oa

2

o

o
2oa

o

o
2oa2oa

2

o

o
2oa24,o =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
′−−− −                        (48) 
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Finally remains the fifth condition (31e), which is a regularity condition and brings the 
seventh piece of information for the coefficients C of the stream functions in Equations (29a) 
and (29b). This condition expresses that the right-hand sides, where derivatives of the 
disturbance velocities or the velocities themselves are divided by the radial coordinate r, must 
be regular on the tube axis r=0. This results in the requirements that 
 

0
r

u
lim iz,

0r
=

∂
∂

→
  ,  0

r
u

lim ir,

0r
=

∂
∂

→
  ,  finite

r
u

lim 2
ir,

0r
=

→
                       (49a,b,c) 

 
where ur,i are the radial, and uz,i the axial disturbance velocities of the inner flow. The 
requirement (49a) for the velocity uz,i is automatically satisfied by the velocity as defined by 
equation (11b). The two conditions (49b) and (49c) identically lead to the requirement that the 
derivative of ur,i w.r.t. the radial coordinate be zero at r=0. This requirement is readily 
expressed by the condition that 
 

( ) 0C
ν

ikBC
ν

ikB0IkC i4,
i

i
i3,

i

i
1i1, =++′   ,                                  (50) 

 
which is the seventh and last condition needed for establishing the dispersion relation of the 
present flow.  
  
3.2 Dispersion relation 
The homogeneous system of equations (33a,b), (37a,b), (42), (48), and (50) for the seven 
integration constants C1,i through C4,o, obtained as a result of application of the seven 
conditions in (30a) through (30e) to the disturbance stream functions (29a) and (29b), exhibits 
non-trivial solutions if and only if the value of the coefficient determinant vanishes. This 
condition finally yields the dispersion relation of the system. This condition for the coefficient 
determinant, after cancellation of some common factors from the second, third, sixth and 
seventh columns, is given as equation (51) on the following page. In that equation, we have 
used abbreviations given below the equation in order to keep the handling of the equation 
feasible. 



 13

       

0 0 0 I1(kR) 
( )
( )kaK
kRK

0

1  1oR
oa

oR M
exp
exp

a
R

+

+
2oR

oa

oR M
exp
exp

a
R

−

−  

0 0 0 kaI0(kR) –ka
( )
( )kaK
kRK

0

0  
oa

oR
oR3, exp

exp
2F

+

+  
oa

oR
oR4, exp

exp2F
−

−   

I1(ka) M1ia M2ia –I1(ka) 
( )
( )kaK
kaK

0

1−  –M1oa –M2oa  

kaI0(ka) ia3,2F  ia4,2F  –kaI0(ka) –ka – oa3,2F  – oa4,2F  = 0                                              (51)

2k2a2εI1(ka) εM1iak1,i εM2iak1,i –2k2 a2I1(ka) –2k2 a2 ( )
( )kaK
kaK

0

1− –M1oak1,o –M2oak1,o  

G1,i G3,i G4,i G1,o G2,o G3,o G4,o  
ka ( )0I1′  iaexp−  iaexp+  0 0 0 0  

             
where we have used the following abbreviations: 
 

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

++
+= 2

o

o

oo

oo
2

1oR R
ν

ikB2,,
νkB

νikAωki
4
11MM  ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
−−= 2

o

o

oo

oo
2

2oR R
ν

ikB2,,
νkB

νikAωki
4
11MM  

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

++
+= 2

o

o

oo

oo
2

1oa a
ν

ikB
2,,

νkB
νikAωk

i
4
11MM  ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
−−= 2

o

o

oo

oo
2

2oa a
ν

ikB2,,
νkB

νikAωki
4
11MM  

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

++
+= 2

i

i

ii

ii
2

1ia a
ν

ikB2,,
νkB

νikAωki
4
11MM  ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
−−= 2

i

i

ii

ii
2

2ia a
ν

ikB2,,
νkB

νikAωki
4
11MM  

 
( )( )oo

2
oR 4νikBRexpexp =+ ,  ( )( )oo

2
oR 4νikBR-expexp =− ,  

( )( )oo
2

oa 4νikBaexpexp =+ , ( )( )oo
2

oa 4νikBa-expexp =− . 

( )( )ii
2

ia 4νikBaexpexp =+ , ( )( )ii
2

ia 4νikBa-expexp =− ,  
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⎟
⎠
⎞

⎜
⎝
⎛ ′−+= 1oR1oR

2

o

o
1oRoR3, MM

2
1R

ν
ikBMF  , ⎟

⎠
⎞

⎜
⎝
⎛ ′−−= 2oR2oR

2

o

o
2oRoR4, MM

2
1R

ν
ikB

MF , 

⎟
⎠
⎞

⎜
⎝
⎛ ′−+= 1ia1ia

2

i

i
1iaia3, MM

2
1a

ν
ikB

MF  , ⎟
⎠
⎞

⎜
⎝
⎛ ′−−= 2ia2ia

2

i

i
2iaia4, MM

2
1a

ν
ikB

MF . 

⎟
⎠
⎞

⎜
⎝
⎛ ′−+= 1oa1oa

2

o

o
1oaoa3, MM

2
1a

ν
ikB

MF  , ⎟
⎠
⎞

⎜
⎝
⎛ ′−−= 2oa2oa

2

o

o
2oaoa4, MM

2
1a

ν
ikB

MF , 

( ) 2

i

iz,22
i1, a

ν
aikUω

a2kk
+

+=  ,   
( ) 2

o

oz,22
o1, a

ν
aikUω

a2kk
+

+=  . 

( ) ( ) ( )( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−−

+
−−+′= kaIak1

ωµ
ikσkaIa

iν
ikAωkaIkaka2I

ν
aBkaIa2ikεG 1

22

i
0

2

i

i
01

i

3
i

1
22

i1,  

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′−+= 1ia

22

i
1ia

i

3
i

1ia1ia
2

i

i
1iai3, Mak1

ωµ
ikσM

ν
aB4M2Ma

ν
ikBM2ikaεG  

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′−−= 2ia

22

i
2ia

i

3
i

2ia2ia
2

i

i
2iai4, Mak1

ωµ
ikσM

ν
aB4M2Ma

ν
ikBM2ikaεG  

( ) ( ) ( )( ) ( )kaIa
iν
ikAωkaIkaka2I

ν
aBkaIa2ikG 0

2

o

o
01

o

3
o

1
22

1,o
+

−−+′=  

( )
( )

( )
( )

2

o

o

0

1

o

3
o

0

122
2,o a

iν
ikAωka

kaK
kaK2

ν
aB

kaK
kaKa2ikG +

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

′
=  

( ) 1oa
o

3
o

1oa1oa
2

o

o
1oa3,o M

ν
aB4M2Ma

ν
ikBM2ikaG +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′−+=  

( ) 2oa
o

3
o

2oa2oa
2

o

o
2oa4,o M

ν
aB4M2Ma

ν
ikBM2ikaG +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
′−−=   . 

The result of our present analysis is therefore a determinantal equation, analogous to what 
Tomotika obtained. Due to the different base flow case treated here, however, in contrast to 
[4], the determinant consists of seven components rather than of only four. Also, since we 
treat a confined flow here, in contrast to the unbounded flow analysed by Tomotika, the 
determinantal equations are not readily comparable. 
 
4. Analysis of the dispersion relation 
Subsequently, we analyse the dispersion relation (51), to some degree following the lines of 
Tomotika [4]. We first attempt to evaluate (51) in full generality, and then look at the 
behaviour of the system under the assumption that inertia plays a far smaller role than 
viscosity and capillarity. This means that, in the second step, we get rid of all terms exhibiting 
the densities of the two fluids. 
 
For starting, we take as known for the flow problem at hand the two volume flow rates iV& and 

oV& , and the fluid properties such as the dynamic viscosities µi and µo and densities ρi and ρo. 
Also we take as known the inner radius R of the tube. This enables us to calculate the radius 
of the filament using equation (8), so that all geometrical parameters of the flow field are 
known then. Furthermore, we set values of the wave number ka between 0 and 1 first and then 
determine the complex value of the complex frequency ω, which satisfy Eq. (51). This puts 
out the oscillation frequency and the damping or growth rates under the disturbance with ka. 
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